AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Targeted microbiome metabolomics reveals flaxseed oil supplementation regulated the gut microbiota and farnesoid X receptor pathway in high-fat diet mice

Chen Yanga( )Zhenxia XuaQingde HuangaXu WangbFenghong Huanga,c( )Qianchun Denga
Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
Show Author Information

Abstract

Flaxseed oil (FSO) rich in n-3 polyunsaturated fatty acids (PUFAs) can protect against obesity and insulin resistance, but the underlying mechanism is unknown. An integrative multiomics of the microbiome and targeted metabolomics approach was performed to investigate the possible pathway for flaxseed oil supplementation on reducing serum total cholesterol, triglyceride and epididymal adipose in high-fat diet mice. FSO ameliorated the gut microbial dysbiosis by increasing the community diversity and the abundance of Clostridiales and Ruminococcaceae. These effects were associated with the regulation of bile acid (BAs) in the feces. FSO reduced the concentrations of conjugated BAs, such as cholic acid, tauro-α-murocholic acid, and tauro-ursodesoxycholic acid in feces, which in turn inhibit the intestinal farnesoid X receptor (FXR)-fibroblast growth factor (FGF) 15 signaling pathway. Further analysis revealed that FSO activated FXR in the liver and regulated downstream gene expression (SHP, SREBP-1c, and CPT-1a), which promoted lipolysis and inhibited lipogenesis. The results of this study suggest that FSO modulates serum lipid concentrations by regulating the gut microbiota, FXR-FGF15 signaling and BA metabolism.

References

[1]

T.D. Noakes, J. Windt, Evidence that supports the prescription of low-carbohydrate high-fat diets: a narrative review, Brit. J. Sport. Me. 51 (2017) 133. https://doi.org/10.1136/bjsports-2016-096491.

[2]

Y. Chooi, C. Ding, F. Magkos, The epidemiology of obesity, Metabolism 92 (2019) 6-10. https://https://doi.org/10.1016/j.metabol.2018.09.005.

[3]

R. Valenzuela, M. Ortiz, M. Hernández-Rodas, et al., Targeting n-3 polyunsaturated fatty acids in non-alcoholic fatty liver disease, Curr. Med. Chem. 27 (2020) 5250-5272. https://https://doi.org/10.2174/0929867326666190410121716.

[4]

A. Goyal, V. Sharma, N. Upadhyay, et al., Flax and flaxseed oil: an ancient medicine & modern functional food, J. Food Sci. Tech. 51 (2014) 1633-1653. https://https://doi.org/10.1007/s13197-013-1247-9.

[5]

H. Beate, H. Jean-Francois, C.M. Isabelle, et al., Dietary n-3 PUFA affect lipid metabolism and tissue function-related genes in bovine muscle, Brit. J. Nutr. 108(5) (2012) 858-863. https://doi.org/10.1017/S0007114511006179.

[6]

J. Hall, K. Tooley, J. Gradin, et al., Influence of dietary long-chain n-3 fatty acids from menhaden fish oil on plasma concentrations of alpha-tocopherol in geriatric beagles, Am. J. Vet. Res. 63(1) (2002) 104-110. https://doi.org/10.2460/ajvr.2002.63.104.

[7]

M. Baranowski, J. Enns, H. Blewett, et al., Dietary flaxseed oil reduces adipocyte size, adipose monocyte chemoattractant protein-1 levels and T-cell infiltration in obese, insulin-resistant rats, Cytokine 59 (2012) 382-391. https://https://doi.org/10.1016/j.cyto.2012.04.004.

[8]

S. Yang, J. Tseng, Y. Chang, et al., Flaxseed oil attenuates nonalcoholic fatty liver of hyperlipidemic hamsters, J. Agr. Food Chem. 57 (2009) 5078-5083. https://https://doi.org/10.1021/jf900499v.

[9]

P.P. Devarshi, N.M. Jangale, A.E. Ghule, et al., Beneficial effects of flaxseed oil and fish oil diet are through modulation of different hepatic genes involved in lipid metabolism in streptozotocin-nicotinamide induced diabetic rats, Genes Nutr. 8 (2013) 329-342. https://doi.org/10.1007/s12263-012-0326-2.

[10]

O.A. Baothman, M.A. Zamzami, I. Taher, et al., The role of gut microbiota in the development of obesity and diabetes, Lipids Health Dis. 15 (2016) 108. https://doi.org/10.1186/s12944-016-0278-4.

[11]

J. Nicholson, E. Holmes, J. Kinross, et al., Host-gut microbiota metabolic interactions, Science 336 (2012) 1262-1267. https://doi.org/10.1126/science.1223813.

[12]

C. Zhang, M. Zhang, S. Wang, et al., Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice, Isme J. 4 (2010) 232-241. https://doi.org/10.1038/ismej.2009.112.

[13]

R.B. Canani, M.D. Costanzo, L. Leone, et al., Potential beneficial effects of butyrate in intestinal and extraintestinal diseases, World J. Gastroentero. 17 (2011) 1519-1528. https://doi.org/10.3748/wjg.v17.i12.1519.

[14]

P. Kurdi, K. Kawanishi, K. Mizutani, et al., Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria, J. Bacteriol. 188 (2006) 1979-1986. https://doi.org/10.1128/JB.188.5.1979-1986.2006.

[15]

H. Shen, X.J. Gao, T. Li, et al., Ginseng polysaccharides enhanced ginsenoside Rb1 and microbial metabolites exposure through enhancing intestinal absorption and affecting gut microbial metabolism, J. Ethnopharmacol. 216 (2018) 47-56. https://doi.org/10.1016/j.jep.2018.01.021.

[16]

A. Wahlström, P. Kovatcheva-Datchary, M. Ståhlman, et al., Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota, J. Lipid Res. 58 (2017) 412-419. https://doi.org/10.1194/jlr.M072819.

[17]

A.S. Devlin, M.A. Fischbach, A biosynthetic pathway for a prominent class of microbiota-derived bile acids, Nature Chem. Biol. 11 (2015) 685-692. https://doi.org/10.1038/nchembio.1864.

[18]

A.L. Ticho, P. Malhotra, P.K. Dudeja, et al., Intestinal absorption of bile acids in health and disease, Compr. Physiol. 10 (2019) 21-56. https://doi.org/10.1002/cphy.c190007.

[19]

C. Jiang, C. Xie, F. Li, et al., Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease, J. Clin. Invest. 125 (2015) 386. https://doi.org/10.1172/JCI76738.

[20]

Parks, Derek, J., Blanchard, et al., Bile acids: natural ligands for an orphan nuclear receptor, Science 284 (1999) 1365-1368. https://doi.org/10.1126/science.284.5418.1365.

[21]

S. Fiorucci, M. Baldoni, P. Ricci, et al., Bile acid-activated receptors and the regulation of macrophages function in metabolic disorders, Curr. Opin. Pharmacol. 53 (2020) 45-54. https://https://doi.org/10.1016/j.coph.2020.04.008.

[22]

S.S. Zhou, J. Xu, H. Zhu, et al., Gut microbiota-involved mechanisms in enhancing systemic exposure of ginsenosides by coexisting polysaccharides in ginseng decoction, Sci. Rep. 6 (2016) 22474. https://doi.org/10.1038/srep22474.

[23]

X. Hu,Y. Bonde,G. Eggertsen, et al., Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism, J. Intern. Med. 278 (2015) 97-97. https://doi.org/10.1111/joim.12140.

[24]

X. Yu, Q.C. Deng, Y.H. Tang et al., Flaxseed oil attenuates hepatic steatosis and insulin resistance in mice by rescuing the adaption to ER stress, J. Agr. Food Chem. 66 (2018) acs.jafc.8b03906-. https://doi.org/10.1021/acs.jafc.8b03906.

[25]

R. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics 26 (2010) 2460-2461. https://doi.org/10.1093/bioinformatics/btq461.

[26]

C. Quast, E. Pruesse, P. Yilmaz, et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res. 41 (2013) D590-596. https://doi.org/10.1093/nar/gks1219/.

[27]

X. Zheng, F. Huang, A. Zhao, et al., Bile acid is a significant host factor shaping the gut microbiome of diet-induced obese mice, BMC Biol. 15 (2017) 120. https://doi.org/10.1186/s12915-017-0462-7.

[28]

D. Del Rio, A. Rodriguez-Mateos, J.P.E. Spencer, et al., Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases, Antioxid. Redox Sign. 18 (2013) 1818-1892. https://doi.org/10.1089/ars.2012.4581.

[29]

R. Moreira Júnior, L. de Carvalho, D. Dos Reis, et al., Diet-induced obesity leads to alterations in behavior and gut microbiota composition in mice, J. Nutr. Biochem. 92 (2021) 108622. https://https://doi.org/10.1016/j.jnutbio.2021.108622.

[30]

T.Y. Huang, W.K. Zhou, X.G. Ma,, et al., Oral administration of camellia oil ameliorates obesity and modifies the gut microbiota composition in mice fed a high-fat diet, FEMS Microbiol. Lett. 368 (2021) fnab063. https://doi.org/10.1093/femsle/fnab063.

[31]

D. Zhang, J. Han, Y. Li, et al., Tuna oil alleviates D-galactose induced aging in mice accompanied by modulating gut microbiota and brain protein expression, J. Agr. Food Chem. 66 (2018) 5510-5520. https://https://doi.org/10.1021/acs.jafc.8b00446.

[32]

R. Hosomi, A. Matsudo, K. Sugimoto, et al., Dietary eicosapentaenoic acid and docosahexaenoic acid ethyl esters influence the gut microbiota and bacterial metabolites in rats, J. Oleo Sci. 70 (2021) 1469-1480. https://https://doi.org/10.5650/jos.ess21189.

[33]

Q.L. Li, Y.N. Huang, Y.Y. Du, et al., Food-grade olive oil Pickering emulsions stabilized by starch/β-cyclodextrin complex nanoparticles: Improved storage stability and regulatory effects on gut microbiota, LWT-Food Sci. Technol. 155 (2021) 112950. https://doi.org/10.1016/j.lwt.2021.112950.

[34]

M. Ziętak, P. Kovatcheva-Datchary, L. Markiewicz, et al., Altered microbiota contributes to reduced diet-induced obesity upon cold exposure, Cell Metab. 23 (2016) 1216-1223. https://doi.org/10.1016/j.cmet.2016.05.001.

[35]

X.C. Lü, W.L. Guo, L. Li, et al., Polysaccharide peptides from Ganoderma lucidum ameliorate lipid metabolic disorders and gut microbiota dysbiosis in high-fat diet-fed rats, J. Funct. Foods, 57 (2019) 48-58. https://doi.org/10.1016/j.jff.2019.03.043.

[36]

W. Xu, L. Lin, A. Liu, et al., L-Theanine affects intestinal mucosal immunity by regulating short-chain fatty acid metabolism under dietary fiber feeding, Food Funct. 11 (2020) 8369-8379. https://doi.org/10.1039/d0fo01069c.

[37]

J. Tap, J. Furet, M. Bensaada, et al., Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults, Environ. Microbiol. 17 (2015) 4954-4964. https://doi.org/10.1111/1462-2920.13006.

[38]

S. Pryde, S. Duncan, G. Hold, et al., The microbiology of butyrate formation in the human colon, FEMS Microbiol. Lett. 217 (2002) 133-139. https://doi.org/10.1016/S0378-1097(02)01106-0.

[39]

H.B. Overby, J.F. Ferguson, Gut microbiota-derived short-chain fatty acids facilitate microbiota: host cross talk and modulate obesity and hypertension, Curr. Hypertens. Rep. 23(2) (2021) 8. https://doi.org/10.1007/s11906-020-01125-2.

[40]

Y. Yao, X. Cai, W. Fei, et al., The role of short-chain fatty acids in immunity, inflammation and metabolism, Crit. Rev. Food Sc. 62(1) (2022) 1-12. https://doi.org/10.1080/10408398.2020.1854675.

[41]

O. Erejuwa, S. Sulaiman, M. Wahab, Modulation of gut microbiota in the management of metabolic disorders: the prospects and challenges, Int. J. Mol. Sci. 15(3) (2014) 4158-4188. https://doi.org/10.3390/ijms15034158.

[42]

A. Pedret, R.M. Valls, L. Calderón-Pérez, et al., Effects of daily consumption of the probiotic Bifidobacterium animalis subsp. lactis CECT 8145 on anthropometric adiposity biomarkers in abdominally obese subjects: a randomized controlled trial, Int. J. Obesity 43 (2018) 1863-1868. https://doi.org/10.1038/s41366-018-0220-0.

[43]

M. Li, X. Shu, H. Xu, et al., Integrative analysis of metabolome and gut microbiota in diet-induced hyperlipidemic rats treated with berberine compounds, J. Transl. Med. 14 (2016) 237. https://doi.org/10.1186/s12967-016-0987-5.

[44]

E. Sanguinetti, M.C. Collado, V.G. Marrachelli, et al., Microbiome-metabolome signatures in mice genetically prone to develop dementia, fed a normal or fatty diet, Sci. Rep. 8 (2018) 4907. https://doi.org/10.1038/s41598-018-23261-1.

[45]

B. Ttla, B. Zrha, B. Rbja, et al., Spirulina platensis polysaccharides attenuate lipid and carbohydrate metabolism disorder in high-sucrose and high-fat diet-fed rats in association with intestinal microbiota, Food Res. Int. 147 (2021) 110530. https://doi.org/10.1016/j.foodres.2021.110530.

[46]

X. Li, H. Wang, T.X. Wang, Dietary wood pulp-derived sterols modulation of cholesterol metabolism and gut microbiota in high-fat-diet-fed hamsters, Food Funct. 10 (2019) 775-785. https://doi.org/10.1039/c8fo02271b.

[47]

T.Q. de AguiarVallim, E.J. Tarling, P.A. Edwards, Pleiotropic roles of bile acids in metabolism, Cell Metab. 17(5) (2013) 657-669. https://doi.org/10.1016/j.cmet.2013.03.013.

[48]

S. Just, S. Mondot, J. Ecker, et al., The gut microbiota drives the impact of bile acids and fat source in diet on mouse metabolism, Microbiome 6 (2018) 134. https://doi.org/10.1186/s40168-018-0510-8.

[49]

M. Sarafian, M. Lewis, A. Pechlivanis, et al., Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry, Anal. Chem. 87 (2015) 9662-9670. https://doi.org/10.1021/acs.analchem.5b01556.

[50]

S. Sayin, A. Wahlström, J. Felin, et al., Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist, Cell Metab. 17 (2013) 225-235. https://doi.org/10.1016/j.cmet.2013.01.003.

[51]

K.M. Schneider, S. Albers, C. Trautwein, Role of bile acids in the gut-liver axis, J. Hepatol. 68 (2018) 1083-1085. https://doi.org/10.1016/j.jhep.2017.11.025.

[52]

B. Simbrunner, M. Trauner, T. Reiberger, Review article: therapeutic aspects of bile acid signalling in the gut-liver axis, Aliment. Pharm. Ther. 54 (2021) 1243-1262. https://doi.org/10.1111/apt.16602.

[53]

J.S. Bajaj, P.B. Hylemon, Gut-liver axis alterations in alcoholic liver disease: Are bile acids the answer? Hepatology 67 (2017) 2074-2075. https://doi.org/10.1002/hep.29760.

[54]

W. Mitsuhiro, M. Kohkichi, S.M. Houten, et al., Bile acid binding resin improves metabolic control through the induction of energy expenditure, PLoS ONE 7 (2012) e38286. https://doi.org/10.1371/journal.pone.0038286.

[55]

M. Begley, C.G.M. Gahan, C. Hill, The interaction between bacteria and bile, FEMS Microbiol. Rev. 29 (2005) 625-651. https://doi.org/10.1016/j.femsre.2004.09.003.

[56]

S. Kevresan, K. Kuhajda, J. Kandrac, et al., Biosynthesis of bile acids in mammalian liver, Eur. J. Drug Metab. Ph. 31 (2006) 145. https://doi.org/10.1007/bf03190711.

[57]

X. Wang, L. Shi, X. Wang, et al., MDG-1, an Ophiopogon polysaccharide, restrains process of non-alcoholic fatty liver disease via modulating the gut-liver axis, Int. J. Biol. Macromol. 141 (2019) 1013-1021. https://doi.org/10.1016/j.ijbiomac.2019.09.007.

[58]

J. Swann, E. Want, F. Geier, et al., Systemic gut microbial modulation of bile acid metabolism in host tissue compartments, P. Natl. Acad. Sci. 108 (2011) 4523-4530. https://doi.org/10.1016/10.1073/pnas.1006734107.

[59]

A. Bustos, G. Font de Valdez, S. Fadda, et al., New insights into bacterial bile resistance mechanisms: the role of bile salt hydrolase and its impact on human health, Food Res. Int. 112 (2018) 250-262. https://doi.org/10.1016/j.foodres.2018.06.035.

[60]

P. Gerard, Metabolism of cholesterol and bile acids by the gut microbiota, Pathogens 3 (2014) 14-24. https://doi.org/10.3390/pathogens3010014.

[61]

R. Kumar, S. Grover, V.K. Batish, Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolase-producing Lactobacillus plantarum strains in Sprague-Dawley rats, Brit. J. Nutr. 105 (2011) 561-573. https://doi.org/10.1017/S0007114510003740.

[62]

Q. Chen, M. Liu, P. Zhang, et al., Fucoidan and galactooligosaccharides ameliorate high-fat diet-induced dyslipidemia in rats by modulating the gut microbiota and bile acid metabolism, Nutrition 65 (2019) 50-59. https://doi.org/10.1016/j.nut.2019.03.001.

[63]

F. Del Chierico, F. Abbatini, A. Russo, et al., Gut microbiota markers in obese adolescent and adult patients: age-dependent differential patterns, Front. Microbiol. 9 (2018) 1210. https://doi.org/10.3389/fmicb.2018.01210.

[64]

Y. Yun, H. Kim, S. Kim, et al., Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort, BMC Microbiol. 17 (2017) 151. https://doi.org/10.1186/s12866-017-1052-0.

[65]

Y. Qi, C. Jiang, J. Cheng, et al., Bile acid signaling in lipid metabolism: metabolomic and lipidomic analysis of lipid and bile acid markers linked to anti-obesity and anti-diabetes in mice, BBA 1851 (2015) 19-29. https://doi.org/10.1016/j.bbalip.2014.04.008.

[66]

C. Lin, R. Kohli, Bile acid metabolism and signaling: potential therapeutic target for nonalcoholic fatty liver disease, Clin. Transl. Gastroen. 9 (2018) 164. https://doi.org/10.1038/s41424-018-0034-3.

[67]

F. Huang, X. Zheng, X. Ma, et al., Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism, Nat. Commun. 10 (2019) 4971. https://doi.org/10.1038/s41467-019-12896-x.

[68]

J. Guo, X. Han, H. Tan, et al., Blueberry extract improves obesity through regulation of the gut microbiota and bile acids via pathways involving FXR and TGR5, iScience 19 (2019) 676-690. https://doi.org/10.1016/j.isci.2019.08.020.

[69]

J. de Boer, V. Bloks, E. Verkade, et al., New insights in the multiple roles of bile acids and their signaling pathways in metabolic control, Curr. Opin. Lipidol. 29 (2018) 194-202. https://doi.org/10.1097/MOL.0000000000000508.

[70]

A. Molinaro, A. Wahlström, H. Marschall, Role of bile acids in metabolic control, Trends Endocrinol. Metab. 29 (2018) 31-41. https://doi.org/10.1016/j.tem.2017.11.002.

[71]

K. Ryan, V. Tremaroli, C. Clemmensen, et al., FXR is a molecular target for the effects of vertical sleeve gastrectomy, Nature 509 (2014) 183-188. https://doi.org/10.1038/nature13135.

[72]

T. Inagaki, M. Choi, A. Moschetta, et al., Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis, Cell Metabol. 2 (2005) 217-225. https://doi.org/10.1016/j.cmet.2005.09.001.

[73]

T. Nishimura, Y. Utsunomiya, M. Hoshikawa, et al., Structure and expression of a novel human FGF, FGF-19, expressed in the fetal brain, BBA 1444 (1999) 148-151. https://doi.org/10.1016/S0167-4781(98)00255-3.

[74]

B. Kong, L.Wang, John Y.L. Chiang, et al., Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice, Hepatology 56 (2012) 1034-1043. https://doi.org/10.1002/hep.25740.

[75]

S. Li, D.D.F. Hsu, B. Li, et al., Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis, Cell Metabol. 20 (2014) 320-332. https://doi.org/10.1016/j.cmet.2014.05.020.

[76]

R. Dong, X. Yang, C. Wang, et al., Yangonin protects against non-alcoholic fatty liver disease through farnesoid X receptor, Phytomedicine 53 (2019) 134-142. https://doi.org/10.1016/j.phymed.2018.09.006.

[77]

M. Watanabe, S. Houten, L. Wang, et al., Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c, J. Clin. Invest. 113 (2004) 1408-1418. https://doi.org/10.1172/JCI21025.

[78]

X. Han, J. Guo, M. Yin, et al., Grape extract activates brown adipose tissue through pathway involving the regulation of gut microbiota and bile acid, Mol. Nutr. Food Res. 64 (2020) e2000149. https://doi.org/10.1002/mnfr.202000149.

[79]

M. Ortiz, S.A. Soto-Alarcón, P. Orellana, et al., Suppression of high-fat diet-induced obesity-associated liver mitochondrial dysfunction by docosahexaenoic acid and hydroxytyrosol co-administration, Dig. Liver. Dis. 52 (2020) 895-904. https://doi.org/10.1016/j.dld.2020.04.019.

[80]

S.A. Soto-Alarcón, M. Ortiz, P. Orellana, et al., Docosahexaenoic acid and hydroxytyrosol co-administration fully prevents liver steatosis and related parameters in mice subjected to high-fat diet: a molecular approach, BioFactors 45 (2019) 930-943. https://doi.org/10.1002/biof.1556.

Food Science and Human Wellness
Pages 2324-2335
Cite this article:
Yang C, Xu Z, Huang Q, et al. Targeted microbiome metabolomics reveals flaxseed oil supplementation regulated the gut microbiota and farnesoid X receptor pathway in high-fat diet mice. Food Science and Human Wellness, 2023, 12(6): 2324-2335. https://doi.org/10.1016/j.fshw.2023.03.036

639

Views

22

Downloads

6

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 22 September 2021
Revised: 04 February 2022
Accepted: 12 March 2022
Published: 04 April 2023
© 2023 Beijing Academy of Food Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return