AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Synthesis and modification of biomass derived carbon dots in ionic liquids and their application: a mini review

Yumeng WangaJian Suna,b( )Bin HeaMi Fenga
School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
Show Author Information

HIGHLIGHTS

● The present review focuses on the relationship between ionic liquids (ILs),carbon dots (CDs) and biomass.

● The multi-roles of ILs displayed in theprocess intensification including synthesis, modification and application ofCDs are mainly discussed.

● For CDs, ILs can adjust their properties,improve their performances, and explore their applications towards green andsustainable directions.

Graphical Abstract

Abstract

As one kind of promising zero-dimensional nanomaterials, carbon dots (CDs) have attracted extensive attention recently in green chemistry and engineering on account of their excellent properties, such as water solubility, comparable optical properties, low toxicity, and surface passivation and functionalization. One direction in CDs research is to prepare these materials with low cost and high quantum yield (QY). As an alternative protocol, utilizing biomass or its derivatives as the raw materials would create more chances to produce biocompatible and cheap CDs. Due to the good solvability for biomass, various ionic liquids (ILs) have been tested in the field of biomass derived CDs, which are found multiple roles of solvation and surface functionalization in the synthesis and application of these materials. This review will not cover the whole developed picture of CDs, but just summarizes the latest research progresses on the ILs based preparation and applications of CDs from biomass and its derivatives. The roles of ILs displayed in the corresponding processing including intensification and surface modification were discussed in detail. At the end of this review, an outlook was provided to highlight the challenges and opportunities associated with this interesting and promising area.

References

[1]

X.Y. Xu, R. Ray, Y.L. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments, J. Am. Chem. Soc. 126 (2004) 12736–12737.

[2]

S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective, Nano Res. 8 (2015) 355–381.

[3]

Y. Dong, R. Wang, G. Li, C. Chen, Y. Chi, G. Chen, Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions, Anal. Chem. 84 (2012) 6220–6224.

[4]

Y. Dong, R. Wang, H. Li, J. Shao, Y. Chi, X. Lin, G. Chen, Polyamine-functionalized carbon quantum dots for chemical sensing, Carbon 50 (2012) 2810–2815.

[5]

P.G. Luo, S. Sahu, S.-T. Yang, S.K. Sonkar, J. Wang, H. Wang, G.E. LeCroy, L. Cao, Y.-P. Sun, Carbon “quantum” dots for optical bioimaging, J. Mater. Chem. B 1 (2013) 2116–2127.

[6]

Y. Dong, N. Zhou, X. Lin, J. Lin, Y. Chi, G. Chen, Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon, Chem. Mater. 22 (2010) 5895–5899.

[7]

L. Cao, M.J. Meziani, S. Sahu, Y.-P. Sun, Photoluminescence properties of graphene versus other carbon nanomaterials, Acc. Chem. Res. 46 (2013) 171–180.

[8]

M.Y. Xue, Z.H. Zhan, M.B. Zou, L.L. Zhang, S.L. Zhao, Green synthesis of stable and biocompatible fluorescent carbon dots from peanut shells for multicolor living cell imaging, New J. Chem. 40 (2016) 1698–1703.

[9]

K. Chen, W. Qing, W. Hu, M. Lu, Y. Wang, X. Liu, On-off-on fluorescent carbon dots from waste tea: their properties, antioxidant and selective detection of CrO42-, Fe3+, ascorbic acid and L-cysteine in real samples, Spectrochim. Acta Mol. Biomol. Spectrosc. 213 (2019) 228–234.

[10]

A. Konwar, U. Baruah, M.J. Deka, A.A. Hussain, S.R. Haque, A.R. Pal, D. Chowdhury, Tea-carbon dots-reduced graphene oxide: an efficient conducting coating material for fabrication of an E-textile, ACS Sustain. Chem. Eng. 5 (2017) 11645–11651.

[11]

X. Chai, H. He, H. Fan, X. Kang, X. Song, A hydrothermal-carbonization process for simultaneously production of sugars, graphene quantum dots, and porous carbon from sugarcane bagasse, Bioresour. Technol. 282 (2019) 142–147.

[12]

H. Qi, M. Teng, M. Liu, S. Liu, J. Li, H. Yu, C. Teng, Z. Huang, H. Liu, Q. Shao, A. Umar, T. Ding, Q. Gao, Z. Guo, Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines, J. Colloid Interface Sci. 539 (2019) 332–341.

[13]

A. Abbas, L.T. Mariana, A.N. Phan, Biomass-waste derived graphene quantum dots and their applications, Carbon 140 (2018) 77–99.

[14]

R. Das, R. Bandyopadhyay, P. Pramanik, Carbon quantum dots from natural resource: a review, Mater. Today Chem. 8 (2018) 96–109.

[15]

H. Li, L. Chen, H. Wu, H. He, Y. Jin, Ionic liquid-functionalized fluorescent carbon nanodots and their applications in electrocatalysis, biosensing, and cell imaging, Langmuir 30 (2014) 15016–15021.

[16]

A. Fernicola, B. Scrosati, H. Ohno, Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices, Ionics 12 (2006) 95–102.

[17]

R.E. Teixeira, Energy-efficient extraction of fuel and chemical feedstocks from algae, Green Chem. 14 (2012) 419–427.

[18]

N.V. Plechkova, K.R. Seddon, Applications of ionic liquids in the chemical industry, Chem. Soc. Rev. 37 (2008) 123–150.

[19]

M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater. 8 (2009) 621–629.

[20]

K. Dehvari, K.Y. Liu, P.-J. Tseng, G. Gedda, W.M. Girma, J.-Y. Chang, Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging, J. Taiwan Inst. Chem. Eng. 95 (2019) 495–503.

[21]

X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, N. Koshizaki, Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents, Chem. Commun. 47 (2011) 932–934.

[22]

S.C. Ray, A. Saha, N.R. Jana, R. Sarkar, Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application, J. Phys. Chem. C 113 (2009) 18546–18551.

[23]

X. Ma, Y. Dong, H. Sun, N. Chen, Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: the optimization and analysis of the synthetic process, Mater. Today Chem. 5 (2017) 1–10.

[24]

J. Shen, S. Shang, X. Chen, D. Wang, Y. Cai, Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging, Mater. Sci. Eng. C Mater. Biol. Appl. 76 (2017) 856–864.

[25]

C. Zhao, X. Lia, C. Cheng, Y. Yang, Green and microwave-assisted synthesis of carbon dots and application for visual detection of cobalt(Ⅱ) ions and pH sensing, Microchem. J. 147 (2019) 183–190.

[26]

N.R. Nirala, G. Khandelwal, B. Kumar, Vinita, R. Prakash, V. Kumar, One step electro-oxidative preparation of graphene quantum dots from wood charcoal as a peroxidase mimetic, Talanta 173 (2017) 36–43.

[27]

R. Wang, K.Q. Lu, Z.R. Tang, Y.J. Xu, Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis, J. Mater. Chem. A 5 (2017) 3717–3734.

[28]

B. Xue, Y. Yang, R. Tang, Y. Sun, X. Cao, P. Li, Z. Zhang, X. Li, One-step hydrothermal synthesis of a flexible nanopaper-based Fe3+ sensor using carbon quantum dot grafted cellulose nanofibrils, Cellulose 27 (2020) 729–742.

[29]

D. Gao, Y.-L. Zhang, J. Sun, H.-J. Fan, One-step synthesis of specific pH-responsive carbon quantum dots and their luminescence mechanism, J. Inorg. Mater. 34 (2019) 1309–1315.

[30]

H. Bui Thi, T. Tran Thi, T. Phuong Dinh, T. Nguyen Ngoc, S. Cho, P. Vuong-Hung, A green luminescence of lemon derived carbon quantum dots and their applications for sensing of V5+ ions, Mater. Sci. Eng. B Adv. Funct. Solid State Mater. 251 (2019) 114455.

[31]

V.K. Singh, V. Singh, P.K. Yadav, S. Chandra, D. Bano, B. Koch, M. Talat, S.H. Hasan, Nitrogen doped fluorescent carbon quantum dots for on-off-on detection of Hg2+ and glutathione in aqueous medium: live cell imaging and IMPLICATION logic gate operation, J. Photochem. Photobiol. Chem. 384 (2019) 112042.

[32]

B. Wang, W. Tang, H. Lu, Z. Huang, Hydrothermal synthesis of ionic liquid-capped carbon quantum dots with high thermal stability and anion responsiveness, J. Mater. Sci. 50 (2015) 5411–5418.

[33]

H.M.R. Goncalves, R.F.P. Pereira, E. Lepleux, T. Carlier, L. Pacheco, S. Pereira, A.J.M. Valente, E. Fortunato, A.J. Duarte, V.d.Z. Bermudez, Nanofluid based on glucose-derived carbon dots functionalized with bmim Cl for the next generation of smart windows, Adv. Sustain. Syst. 3 (2019) 1900047.

[34]

B. Wang, A. Song, L. Feng, H. Ruan, H. Li, S. Dong, J. Hao, Tunable amphiphilicity and multifunctional applications of ionic-liquid-modified carbon quantum dots, ACS Appl. Mater. Interfaces 7 (2015) 6919–6925.

[35]

X.F. Sun, K.Y. Yin, B.Y. Liu, S.J. Zhou, J.M. Cao, G.P. Zhang, H.G. Li, Carbon quantum dots in ionic liquids: a new generation of environmentally benign photoluminescent inks, J. Mater. Chem. C 5 (2017) 4951–4958.

[36]

W.W. Tang, B.G. Wang, J.T. Li, Y.Z. Li, Y. Zhang, H.P. Quan, Z.Y. Huang, Facile pyrolysis synthesis of ionic liquid capped carbon dots and subsequent application as the water-based lubricant additives, J. Mater. Sci. 54 (2019) 1171–1183.

[37]

H. Zhang, H. Wang, Y. Wang, B. Xin, Controlled synthesis and photocatalytic performance of biocompatible uniform carbon quantum dots with microwave absorption capacity, Appl. Surf. Sci. 512 (2020) 145751.

[38]

J. Prekodravac, B. Vasiljevic, Z. Markovic, D. Jovanovic, D. Kleut, Z. Spitalsky, M. Micusik, M. Danko, D. Bajuk-Bogdanovic, B. Todorovic-Markovic, Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications, Ceram. Int. 45 (2019) 17006–17013.

[39]

Y. Liang, L. Xu, K. Tang, Y. Guan, T. Wang, H. Wang, W.W. Yu, Nitrogen-doped carbon dots used as an “on-off-on” fluorescent sensor for Fe3+ and glutathione detection, Dyes Pigments 178 (2020) 108358.

[40]

A. Ghanem, R. Al-Qassar Bani Al-Marjeh, Y. Atassi, Novel nitrogen-doped carbon dots prepared under microwave-irradiation for highly sensitive detection of mercury ions, Heliyon 6 (2020) e03750-e03750.

[41]

Q. Wang, X. Liu, L. Zhang, Y. Lv, Microwave-assisted synthesis of carbon nanodots through an eggshell membrane and their fluorescent application, Analyst 137 (2012) 5392–5397.

[42]

P.-T. Thuan-Nguyen, T. Petenzi, C. Ranjan, H. Randriamahazaka, J. Ghilane, Microwave assisted synthesis of carbon dots in ionic liquid as metal free catalyst for highly selective production of hydrogen peroxide, Carbon 130 (2018) 544–552.

[43]

C.-B. Ke, T.-L. Lu, J.-L. Chen, Capacitively coupled plasma discharge of ionic liquid solutions to synthesize carbon dots as fluorescent sensors, Nanomaterials 8 (2018) 372.

[44]

P. Wu, W. Li, Q. Wu, Y. Liu, S. Liu, Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3+ ions in an acidic environment, RSC Adv. 7 (2017) 44144–44153.

[45]

H. Su, Z. Bi, Y. Ni, L. Yan, One-pot degradation of cellulose into carbon dots and organic acids in its homogeneous aqueous solution, Green Energy Environ. 4 (2019) 391–399.

[46]

P. Shen, J. Gao, J. Cong, Z. Liu, C. Li, J. Yao, Synthesis of cellulose-based carbon dots for bioimaging, Chemistryselect 1 (2016) 1314–1317.

[47]

Y.H. Ng, S.F. Chin, S.C. Pang, S.M. Ng, The luminescence profile of carbon dots synthesized from alpha-cellulose under different acid hydrolysis conditions, Opt. Mater. 70 (2017) 50–56.

[48]

S. Li, X. Zhao, Y. Zhang, H. Chen, Y. Liu, Fluorescent N-doped carbon dots from bacterial cellulose for highly sensitive bacterial detection, Bioresources 15 (2020) 78–88.

[49]

S. Jayaweera, K. Yin, X. Hu, W.J. Ng, Fluorescent N/Al Co-doped carbon dots from cellulose biomass for sensitive detection of manganese (VⅡ), J. Fluoresc. 29 (2019) 1291–1300.

[50]

J. Woo, Y. Song, J. Ahn, H. Kim, Green one-pot preparation of carbon dots (CD)-embedded cellulose transparent film for Fe3+ indicator using ionic liquid, Cellulose 27 (2020) 4609–4621.

[51]

C. Wang, C. Wang, P. Xu, A. Li, Y. Chen, K. Zhuo, Synthesis of cellulose-derived carbon dots using acidic ionic liquid as a catalyst and its application for detection of Hg2+, J. Mater. Sci. 51 (2016) 861–867.

[52]

H.M.R. Goncalves, R.F.P. Pereira, E. Lepleux, L. Pacheco, A.J.M. Valente, A.J. Duarte, V.D. Bermudez, Non-Newtonian thermosensitive nanofluid based on carbon dots functionalized with ionic liquids, Small 16 (2020) 1907661.

[53]

X.Q. Jiang, Y.X. Shi, X. Liu, M. Wang, P.P. Song, F. Xu, X.M. Zhang, Synthesis of nitrogen-doped lignin/DES carbon quantum dots as a fluorescent probe for the detection of Fe3+ ions, Polymers 10 (2018) 1282.

[54]

X.Q. Jiang, J.B. Huang, T.Y. Chen, Q. Zhao, F. Xu, X.M. Zhang, Synthesis of hemicellulose/deep eutectic solvent based carbon quantum dots for ultrasensitive detection of Ag+ and L-cysteine with "off-on" pattern, Int. J. Biol. Macromol. 153 (2020) 412–420.

[55]

S.D. Calhan, M.O. Alas, M. Asik, F.N.D. Kaya, R. Genc, One-pot synthesis of hydrophilic and hydrophobic fluorescent carbon dots using deep eutectic solvents as designer reaction media, J. Mater. Sci. 53 (2018) 15362–15375.

[56]

A. Brandt, J. Grasvik, J.P. Hallett, T. Welton, Deconstruction of lignocellulosic biomass with ionic liquids, Green Chem. 15 (2013) 550–583.

[57]

Y. Jeong, K. Moon, S. Jeong, W.-G. Koh, K. Lee, Converting waste papers to fluorescent carbon dots in the recycling process without loss of ionic liquids and bioimaging applications, ACS Sustain. Chem. Eng. 6 (2018) 4510–4515.

[58]

J. Xu, L. Dai, C. Zhang, Y. Gui, L. Yuan, Y. Lei, B. Fan, Ionic liquid-aided hydrothermal treatment of lignocellulose for the synergistic outputs of carbon dots and enhanced enzymatic hydrolysis, Bioresour. Technol. 305 (2020) 123043.

[59]

J. Lu, J.-x. Yang, J. Wang, A. Lim, S. Wang, K.P. Loh, One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids, ACS Nano 3 (2009) 2367–2375.

[60]

X. Miao, D. Qu, D. Yang, B. Nie, Y. Zhao, H. Fan, Z. Sun, Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization, Adv. Mater. 30 (2018) 1704740.

[61]

T. Guo, A. Zheng, X. Chen, Y. Shu, J. Wang, The structure-activity relationship of hydrophilic carbon dots regulated by the nature of precursor ionic liquids, J. Colloid Interface Sci. 554 (2019) 722–730.

[62]

K. Jiang, S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai, H. Lin, Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging, Angew. Chem. Int. Ed. 54 (2015) 5360–5363.

[63]

S. Kim, S.W. Hwang, M.-K. Kim, D.Y. Shin, D.H. Shin, C.O. Kim, S.B. Yang, J.H. Park, E. Hwang, S.-H. Choi, G. Ko, S. Sim, C. Sone, H.J. Choi, S. Bae, B.H. Hong, Anomalous behaviors of visible luminescence from graphene quantum dots: interplay between size and shape, ACS Nano 6 (2012) 8203–8208.

[64]

H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C.H.A. Tsang, X. Yang, S.-T. Lee, Water-soluble fluorescent carbon quantum dots and photocatalyst design, Angew. Chem. Int. Ed. 49 (2010) 4430–4434.

[65]

G. He, M. Shu, Z. Yang, Y. Ma, D. Huang, S. Xu, Y. Wang, N. Hu, Y. Zhang, L. Xu, Microwave formation and photoluminescence mechanisms of multi-states nitrogen doped carbon dots, Appl. Surf. Sci. 422 (2017) 257–265.

[66]

Y.-P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.-Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence, J. Am. Chem. Soc. 128 (2006) 7756–7757.

[67]

A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, E.P. Giannelis, Surface functionalized carbogenic quantum dots, Small 4 (2008) 455–458.

[68]

Z. Huang, F. Lin, M. Hu, C. Li, T. Xu, C. Chen, X. Guo, Carbon dots with tunable emission, controllable size and their application for sensing hypochlorous acid, J. Lumin. 151 (2014) 100–105.

[69]

H. Kalita, J. Mohapatra, L. Pradhan, A. Mitra, D. Bahadur, M. Aslam, Efficient synthesis of rice based graphene quantum dots and their fluorescent properties, RSC Adv. 6 (2016) 23518–23524.

[70]

J.R. Bhamore, S. Jha, T.J. Park, S.K. Kailasa, Green synthesis of multi-color emissive carbon dots from Manilkara zapota fruits for bioimaging of bacterial and fungal cells, J. Photochem. Photobiol. B Biol. 191 (2019) 150–155.

[71]

H. Diao, T. Li, R. Zhang, Y. Kang, W. Liu, Y. Cui, S. Wei, N. Wang, L. Li, H. Wang, W. Niu, T. Sun, Facile and green synthesis of fluorescent carbon dots with tunable emission for sensors and cells imaging, Spectrochim. Acta Mol. Biomol. Spectrosc. 200 (2018) 226–234.

[72]

H.P. Castro, V.S. Souza, J.D. Scholten, J.H. Dias, J.A. Fernandes, F.S. Rodembusch, R. dos Reis, J. Dupont, S.R. Teixeira, R.R. Correia, Synthesis and characterisation of fluorescent carbon nanodots produced in ionic liquids by laser ablation, Chem. A Eur. J. 22 (2016) 138–143.

[73]

L. Bao, Z.L. Zhang, Z.Q. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi, D.W. Pang, Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism, Adv. Mater. 23 (2011) 5801–5806.

[74]

C. Cheng, M. Xing, Q. Wu, A universal facile synthesis of nitrogen and sulfur codoped carbon dots from cellulose-based biowaste for fluorescent detection of Fe3+ ions and intracellular bioimaging, Mater. Sci. Eng. C Mater. Biol. Appl. 99 (2019) 611–619.

[75]

A. Hao, X. Guo, Q. Wu, Y. Sun, C. Cong, W. Liu, Exploring the interactions between polyethyleneimine modified fluorescent carbon dots and bovine serum albumin by spectroscopic methods, J. Lumin. 170 (2016) 90–96.

[76]

C. Sun, Y. Zhang, P. Wang, Y. Yang, Y. Wang, J. Xu, Y. Wang, W.W. Yu, Synthesis of nitrogen and sulfur Co-doped carbon dots from garlic for selective detection of Fe3+, Nanoscale Res. Lett. 11 (2016) 110.

[77]

Q.-X. Mao, L. Han, Y. Shu, X.-W. Chen, J.-H. Wang, Improving the biocompatibility of carbon nanodots for cell imaging, Talanta 161 (2016) 54–61.

[78]

X.H. Liu, J.X. Zheng, Y.Z. Yang, Y.K. Chen, X.G. Liu, Preparation of N-doped carbon dots based on starch and their application in white LED, Opt. Mater. 86 (2018) 530–536.

[79]

J.X. Zheng, X.H. Liu, Y.Z. Yang, X.G. Liu, B.S. Xu, Rapid and green synthesis of fluorescent carbon dots from starch for white light-emitting diodes, N. Carbon Mater. 33 (2018) 276–287.

[80]

A. Zheng, T. Guo, F. Guan, X. Chen, Y. Shu, J. Wang, Ionic liquid mediated carbon dots: preparations, properties and applications, Trac. Trends Anal. Chem. 119 (2019) 115638.

[81]

B. Wang, W. Tang, H. Lu, Z. Huang, Ionic liquid capped carbon dots as a high-performance friction-reducing and antiwear additive for poly(ethylene glycol), J. Mater. Chem. A 4 (2016) 7257–7265.

[82]

X. Sun, Y. Qian, Y. Jiao, J. Liu, F. Xi, X. Dong, Ionic liquid-capped graphene quantum dots as label-free fluorescent probe for direct detection of ferricyanide, Talanta 165 (2017) 429–435.

[83]

M. Mohammadi, A. Rezaei, A. Khazaei, X. Shu, H. Zheng, Targeted development of sustainable green catalysts for oxidation of alcohols via tungstate-decorated multifunctional amphiphilic carbon quantum dots, ACS Appl. Mater. Interfaces 11 (2019) 33194–33206.

[84]

W. Ma, Z. Gong, K. Gao, L. Qiang, J. Zhang, S. Yu, Superlubricity achieved by carbon quantum dots in ionic liquid, Mater. Lett. 195 (2017) 220–223.

[85]

W. Shang, T. Cai, Y. Zhang, D. Liu, L. Sun, X. Su, S. Liu, Covalent grafting of chelated othoborate ionic liquid on carbon quantum dot towards high performance additives: synthesis, characterization and tribological evaluation, Tribol. Int. 121 (2018) 302–309.

[86]

Y. Park, J. Yoo, B. Lim, W. Kwon, S.W. Rhee, Improving the functionality of carbon nanodots: doping and surface functionalization, J. Mater. Chem. A 4 (2016) 11582–11603.

[87]

Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao, Y. Chi, C.M. Li, T. Yu, Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission, Angew. Chem. Int. Ed. 52 (2013) 7800–7804.

[88]

S. Chandra, P. Patra, S.H. Pathan, S. Roy, S. Mitra, A. Layek, R. Bhar, P. Pramanik, A. Goswami, Luminescent S-doped carbon dots: an emergent architecture for multimodal applications, J. Mater. Chem. B 1 (2013) 2375–2382.

[89]

L. Lin, Y. Luo, P. Tsai, J. Wang, X. Chen, Metal ions doped carbon quantum dots: synthesis, physicochemical properties, and their applications, Trac. Trends Anal. Chem. 103 (2018) 87–101.

[90]

Q. Zhang, W. Xu, C. Han, X. Wang, Y. Wang, Z. Li, W. Wu, M. Wu, Graphene structure boosts electron transfer of dual-metal doped carbon dots in photooxidation, Carbon 126 (2018) 128–134.

[91]

Q. Fang, Y. Dong, Y. Chen, C.-H. Lu, Y. Chi, H.-H. Yang, T. Yu, Luminescence origin of carbon based dots obtained from citric acid and amino group-containing molecules, Carbon 118 (2017) 319–326.

[92]

X. Zhai, P. Zhang, C. Liu, T. Bai, W. Li, L. Dai, W. Liu, Highly luminescent carbon nanodots by microwave-assisted pyrolysis, Chem. Commun. 48 (2012) 7955–7957.

[93]

J. Gu, X. Zhang, A. Pang, J. Yang, Facile synthesis and photoluminescence characteristics of blue-emitting nitrogen-doped graphene quantum dots, Nanotechnology 27 (2016) 165704.

[94]

Z. Qian, J. Ma, X. Shan, H. Feng, L. Shao, J. Chen, Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform, Chem. A Eur. J. 20 (2014) 2254–2263.

[95]

Y. Dong, H. Pang, H.B. Yang, C. Guo, J. Shao, Y. Chi, C.M. Li, T. Yu, Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission, Angew. Chem. Int. Ed. 52 (2013) 7800–7804.

[96]

D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts, Nanoscale 5 (2013) 12272–12277.

[97]

Q. Ye, F. Yan, Y. Luo, Y. Wang, X. Zhou, L. Chen, Formation of N, S-codoped fluorescent carbon dots from biomass and their application for the selective detection of mercury and iron ion, Spectrochim. Acta Mol. Biomol. Spectrosc. 173 (2017) 854–862.

[98]

X. Deng, Y. Feng, H. Li, Z. Du, Q. Teng, H. Wang, N-doped carbon quantum dots as fluorescent probes for highly selective and sensitive detection of Fe3+ ions, Particuology 41 (2018) 94–100.

[99]

J. Yu, C. Liu, K. Yuan, Z. Lu, Y. Cheng, L. Li, X. Zhang, P. Jin, F. Meng, H. Liu, Luminescence mechanism of carbon dots by tailoring functional groups for sensing Fe3+ ions, Nanomaterials 8 (2018) 233.

[100]

Y. Li, Y. Liu, X. Shang, D. Chao, L. Zhou, H. Zhang, Highly sensitive and selective detection of Fe3+ by utilizing carbon quantum dots as fluorescent probes, Chem. Phys. Lett. 705 (2018) 1–6.

[101]

L. Xu, W. Mao, J. Huang, S. Li, K. Huang, M. Li, J. Xia, Q. Chen, Economical, green route to highly fluorescence intensity carbon materials based on ligninsulfonate/graphene quantum dots composites: application as excellent fluorescent sensing platform for detection of Fe3+ ions, Sensor. Actuator. B Chem. 230 (2016) 54–60.

[102]

B.-Y. Fang, C. Li, Y.-Y. Song, F. Tan, Y.-C. Cao, Y.-D. Zhao, Nitrogen-doped graphene quantum dot for direct fluorescence detection of Al3+ in aqueous media and living cells, Biosens. Bioelectron. 100 (2018) 41–48.

[103]

P. Wu, W. Li, Q. Wu, Y.S. Liu, S.X. Liu, Hydrothermal synthesis of nitrogen-doped carbon quantum dots from microcrystalline cellulose for the detection of Fe3+ ions in an acidic environment, RSC Adv. 7 (2017) 44144–44153.

[104]

Y. Xia, C. Zhu, Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (Ⅱ), Talanta 75 (2007) 215–221.

[105]

C.-B. Ke, T.-L. Lu, J.-L. Chen, Excitation-independent dual emissions of carbon dots synthesized by plasma irradiation of ionic liquids: ratiometric fluorometric determination of norfloxacin and mercury(Ⅱ), Microchim. Acta 186 (2019) 376.

[106]

S.A.A. Vandarkuzhali, S. Natarajan, S. Jeyabalan, G. Sivaraman, S. Singaravadivel, S. Muthusubramanian, B. Viswanathan, Pineapple peel-derived carbon dots: applications as sensor, molecular keypad lock, and memory device, ACS Omega 3 (2018) 12584–12592.

[107]

K. Kunpatee, S. Traipop, O. Chailapakul, S. Chuanuwatanakul, Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode, Sensor. Actuator. B Chem. 314 (2020) 128059.

[108]

A.L. Sanati, F. Faridbod, M.R. Ganjali, Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin, J. Mol. Liq. 241 (2017) 316–320.

[109]

H. Watanabe, S. Asano, S.-i. Fujita, H. Yoshida, M. Arai, Nitrogen-doped, metalfree activated carbon catalysts for aerobic oxidation of alcohols, ACS Catal. 5 (2015) 2886–2894.

[110]

C. Dai, J. Zhang, C. Huang, Z. Lei, Ionic liquids in selective oxidation: catalysts and solvents, Chem. Rev. 117 (2017) 6929–6983.

[111]

D. Liu, W. Yao, J. Wang, Y. Liu, M. Zhang, Y. Zhu, Enhanced visible light photocatalytic performance of a novel heterostructured Bi4O5Br2/Bi24O31Br10/Bi2SiO5 photocatalyst, Appl. Catal. B Environ. 172 (2015) 100–107.

[112]

J. Di, J. Xia, H. Li, S. Guo, S. Dai, Bismuth oxyhalide layered materials for energy and environmental applications, Nano Energy 41 (2017) 172–192.

[113]

J. Xia, J. Di, H. Li, H. Xu, H. Li, S. Guo, Ionic liquid-induced strategy for carbon quantum dots/BiOX (X=Br, Cl) hybrid nanosheets with superior visible lightdriven photocatalysis, Appl. Catal. B Environ. 181 (2016) 260–269.

[114]

J. Di, J. Xia, M. Ji, L. Xu, S. Yin, Q. Zhang, Z. Chen, H. Li, Carbon quantum dots in situ coupling to bismuth oxyiodide via reactable ionic liquid with enhanced photocatalytic molecular oxygen activation performance, Carbon 98 (2016) 613–623.

[115]

X. Huang, C. Tan, Z. Yin, H. Zhang, 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials, Adv. Mater. 26 (2014) 2185–2204.

[116]

M. Xiong, L. Chen, Q. Yuan, J. He, S.-L. Luo, C.-T. Au, S.-F. Yin, Controlled synthesis of graphitic carbon nitride/beta bismuth oxide composite and its high visible-light photocatalytic activity, Carbon 86 (2015) 217–224.

[117]

Y. Chen, G. Tian, Y. Shi, Y. Xiao, H. Fu, Hierarchical MoS2/Bi2MoO6 composites with synergistic effect for enhanced visible photocatalytic activity, Appl. Catal. B Environ. 164 (2015) 40–47.

[118]

B.H. Zhang, Y.J. Liu, M.Q. Ren, W.T. Li, X. Zhang, R. Vajtai, P.M. Ajayan, J.M. Tour, L. Wang, Sustainable synthesis of bright green fluorescent nitrogendoped carbon quantum dots from alkali lignin, Chemsuschem 12 (2019) 4202–4210.

[119]

C. Zhu, J. Zhai, S. Dong, Bifunctional fluorescent carbon nanodots: green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction, Chem. Commun. 48 (2012) 9367–9369.

[120]

T.N. Pham-Truong, C. Ranjan, H. Randriamahazaka, J. Ghilane, Nitrogen doped carbon dots embedded in poly(ionic liquid) as high efficient metal-free electrocatalyst for oxygen reduction reaction, Catal. Today 335 (2019) 381–387.

[121]

S. Zhu, Q. Meng, L. Wang, J. Zhang, Y. Song, H. Jin, K. Zhang, H. Sun, H. Wang, B. Yang, Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging, Angew. Chem. Int. Ed. 52 (2013) 3953–3957.

[122]

P. Yang, Z. Zhu, T. Zhang, M. Chen, Y. Cao, W. Zhang, X. Wang, X. Zhou, W. Chen, Facile synthesis and photoluminescence mechanism of green emitting xylose-derived carbon dots for anti-counterfeit printing, Carbon 146 (2019) 636–649.

[123]

C.-F. Wang, R. Cheng, W.-Q. Ji, K. Ma, L. Ling, S. Chen, Recognition of latent fingerprints and ink-free printing derived from interfacial segregation of carbon dots, ACS Appl. Mater. Interfaces 10 (2018) 39205–39213.

[124]

J. Guo, H. Li, L. Ling, G. Li, R. Cheng, X. Lu, A.-Q. Xie, Q. Li, C.-F. Wang, S. Chen, Green synthesis of carbon dots toward anti-counterfeiting, ACS Sustain. Chem. Eng. 8 (2020) 1566–1572.

[125]

Y. Ye, D. Yang, H. Chen, S. Guo, Q. Yang, L. Chen, H. Zhao, L. Wang, A high-efficiency corrosion inhibitor of N-doped citric acid-based carbon dots for mild steel in hydrochloric acid environment, J. Hazard Mater. 381 (2020) 121019.

[126]

S. Yesudass, L.O. Olasunkanmi, I. Bahadur, M.M. Kabanda, I.B. Obot, E.E. Ebenso, Experimental and theoretical studies on some selected ionic liquids with different cations/anions as corrosion inhibitors for mild steel in acidic medium, J. Taiwan Inst. Chem. Eng. 64 (2016) 252–268.

[127]

M. Corrales-Luna, M. Tu Le, M. Romero-Romo, M. Palomar-Pardave, E.M. ArceEstrada, 1-Ethyl 3-methylimidazolium thiocyanate ionic liquid as corrosion inhibitor of API 5L X52 steel in H2SO4 and HCl media, Corrosion Sci. 153 (2019) 85–99.

[128]

D. Yang, Y. Ye, Y. Su, S. Liu, D. Gong, H. Zhao, Functionalization of citric acid-based carbon dots by imidazole toward novel green corrosion inhibitor for carbon steel, J. Clean. Prod. 229 (2019) 180–192.

[129]

C. Liu, R.I. Revilla, Z. Liu, D. Zhang, X. Li, H. Terryn, Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel, Corrosion Sci. 129 (2017) 82–90.

[130]

Y. Ye, D. Zhang, T. Liu, Z. Liu, J. Pu, W. Liu, H. Zhao, X. Li, L. Wang, Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene, Carbon 142 (2019) 164–176.

[131]

E. Kowsari, S.Y. Arman, M.H. Shahini, H. Zandi, A. Ehsani, R. Naderi, A. PourghasemiHanza, M. Mehdipour, In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution, Corrosion Sci. 112 (2016) 73–85.

[132]

H. Zhang, X. Qiao, T. Cai, J. Chen, Z. Li, H. Qiu, Preparation and characterization of carbon dot-decorated silica stationary phase in deep eutectic solvents for hydrophilic interaction chromatography, Anal. Bioanal. Chem. 409 (2017) 2401–2410.

[133]

Q. Wu, Y. Sun, J. Gao, L. Chen, S. Dong, G. Luo, H. Li, L. Wang, L. Zhao, Ionic liquid- functionalized graphene quantum dot- bonded silica as multi- mode HPLC stationary phase with enhanced selectivity for acid compounds, New J. Chem. 42 (2018) 8672–8680.

[134]

T. Cai, H. Zhang, J. Chen, Z. Li, H. Qiu, Polyethyleneimine-functionalized carbon dots and their precursor co-immobilized on silica for hydrophilic interaction chromatography, J. Chromatogr. A 1597 (2019) 142–148.

[135]

L. Song, H. Zhang, J. Chen, Z. Li, M. Guan, H. Qiu, Imidazolium ionic liquids-derived carbon dots-modified silica stationary phase for hydrophilic interaction chromatography, Talanta 209 (2020) 120518.

Green Chemical Engineering
Pages 94-108
Cite this article:
Wang Y, Sun J, He B, et al. Synthesis and modification of biomass derived carbon dots in ionic liquids and their application: a mini review. Green Chemical Engineering, 2020, 1(2): 94-108. https://doi.org/10.1016/j.gce.2020.09.010

220

Views

6

Downloads

45

Crossref

32

Web of Science

48

Scopus

0

CSCD

Altmetrics

Published: 28 September 2020
© 2020 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return