AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Pore engineering of ZIF-8 with ionic liquids for membrane-based CO2 separation: bearing functional group effect

Zhengqing ZhangXuemeng JiaYuxiu Sun( )Xiangyu GuoHongliang HuangChongli Zhong( )
State Key Laboratory of Separation Membranes and Membrane Processes and School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
Show Author Information

HIGHLIGHTS

● The effect of functional groups of ILs in IL@MOF on adsorption was investigated using molecular simulation.

● NH2-IL@ZIF-8 exhibited the highest CO2 affinity and CO2/CH4 adsorptive selectivity, which was verified by experiments.

● NH2-IL@ZIF-8/Pebax exhibited superior CO2 selectivity without losing high CO2 permeability for CO2/CH4 separation.

● A research mode of combining molecular simulation prediction and experimental verification was proposed.

Graphical Abstract

Abstract

CO2 separation performance of polymer membranes can be significantly enhanced by selecting porous fillers with high CO2 affinity. Ionic liquids incorporation has been recognized as an effective strategy for improving the separation ability of pristine porous fillers. However, the influence of the specific functional groups of ILs in IL@MOF composites on separation performance of MMMs still remains unclear. Herein, we designed three microenvironment-tuned IL@ZIF-8 composites in which the three ILs contain different functional groups (-CH3, –SO3H, and –NH2). Molecular simulation results showed that the NH2-IL@ZIF-8 has a commendable CO2 adsorption capacity and CO2/CH4 adsorptive selectivity, and the results were well confirmed by the following experimental data. More importantly, the prepared NH2-IL@ZIF-8 based MMMs also exhibit superior CO2 separation performance among the three IL@ZIF-8 based MMMs owning to its high CO2 affinity. Thus, this work can provide guidance for designing IL@MOF composites for MMMs fabrication towards gas separation, and the research mode combining molecular simulation prediction and experimental verification can afford valuable reference for material development in membrane separation field.

References

[1]

Y. Zhang, J. Sunarso, S. Liu, R. Wang, Current status and development of membranes for CO2/CH4 separation: a review, Int. J. Greenh. Gas Control 12 (2013) 84–107.

[2]

X. Guo, Z. Qiao, D. Liu, C. Zhong, Mixed-matrix membranes for CO2 separation: role of the third component, J. Mater. Chem. 7 (2019) 24738–24759.

[3]

Z. Guo, W. Zheng, X. Yan, Y. Dai, X. Ruan, X. Yang, X. Li, N. Zhang, G. He, Ionic liquid tuning nanocage size of MOFs through a two-step adsorption/infiltration strategy for enhanced gas screening of mixed-matrix membranes, J. Membr. Sci. 605 (2020) 118101.

[4]

L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320 (2008) 390–400.

[5]

C. Altintas, S. Keskin, Molecular simulations of MOF membranes and performance predictions of MOF/polymer mixed matrix membranes for CO2/CH4 separations, ACS Sustain. Chem. Eng. 7 (2019) 2739–2750.

[6]

Y. Ban, Z. Li, Y. Li, Y. Peng, H. Jin, W. Jiao, A. Guo, P. Wang, Q. Yang, C. Zhong, W. Yang, Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture, Angew. Chem. Int. Ed. 54 (2015) 15483–15487.

[7]

J. Zhao, K. Xie, L. Liu, M. Liu, W. Qiu, P.A. Webley, Enhancing plasticization-resistance of mixed-matrix membranes with exceptionally high CO2/CH4 selectivity through incorporating ZSM-25 zeolite, J. Membr. Sci. 583 (2019) 23–30.

[8]

W. Zhang, D. Liu, X. Guo, H. Huang, C. Zhong, Fabrication of mixed-matrix membranes with MOF-derived porous carbon for CO2 separation, AIChE J. 64 (2018) 3400–3409.

[9]

H. Zhang, R. Guo, J. Hou, Z. Wei, X. Li, Mixed-matrix membranes containing carbon nanotubes composite with hydrogel for efficient CO2 separation, ACS Appl. Mater. Interfaces 8 (2016) 29044–29051.

[10]

A. Nuhnen, D. Dietrich, S. Millan, C. Janiak, Role of filler porosity and filler/polymer interface volume in metal–organic framework/polymer mixed-matrix membranes for gas geparation, ACS Appl. Mater. Interfaces 10 (2018) 33589–33600.

[11]

M. Shan, B. Seoane, E. Rozhko, A. Dikhtiarenko, G. Clet, F. Kapteijn, J. Gascon, Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 separation, Chem. Eur J. 22 (2016) 14467–14470.

[12]

M. Anson, J. Marchese, E. Garis, N. Ochoa, C. Pagliero, ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation, J. Membr. Sci. 243 (2004) 19–28.

[13]

C. Wang, D. Liu, W. Lin, Metal–organic frameworks as a tunable platform for designing functional molecular materials, J. Am. Chem. Soc. 135 (2013) 13222–13234.

[14]

Y. Tang, H. Huang, J. Li, W. Xue, C. Zhong, IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture, J. Mater. Chem. 7 (2019) 18324–18329.

[15]

J. Wang, D. Xie, Z. Zhang, Q. Yang, H. Xing, Y. Yang, Q. Ren, Z. Bao, Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metal-organic framework, AIChE J. 63 (2017) 2165–2175.

[16]

Z. Deng, T. Wan, D. Chen, W. Ying, Y.-J. Zeng, Y. Yan, X. Peng, Photothermal-responsive microporous nanosheets confined ionic liquid for efficient CO2 separation, Small 16 (2020) 2002699.

[17]

Y. Sun, H. Huang, H. Vardhan, B. Aguila, C. Zhong, J.A. Perman, A.M. Al-Enizi, A. Nafady, S. Ma, Facile approach to graft ionic liquid into MOF for improving the efficiency of CO2 chemical fixation, ACS Appl. Mater. Interfaces 10 (2018) 27124–27130.

[18]

K.B. Sezginel, S. Keskin, A. Uzun, Tuning the gas separation performance of CuBTC by ionic liquid incorporation, Langmuir 32 (2016) 1139–1147.

[19]

A.N.V. Azar, S. Velioglu, S. Keskin, Large-scale computational screening of metal organic framework (MOF) membranes and MOF-based polymer membranes for H2/N2 separations, ACS Sustain. Chem. Eng. 7 (2019) 9525–9536.

[20]

H. Daglar, I. Erucar, S. Keskin, Exploring the performance limits of MOF/polymer MMMs for O2/N2 separation using computational screening, J. Membr. Sci. 618 (2021) 118555.

[21]

H. Daglar, S. Keskin, High-throughput screening of metal organic frameworks as fillers in mixed matrix membranes for flue gas separation, Adv. Theory Simul. 2 (2019) 1900109.

[22]

S. Basu, A. Cano-Odena, I.F.J. Vankelecom, MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations, Separ. Purif. Technol. 81 (2011) 31–40.

[23]

J. Ma, Y. Ying, X. Guo, H. Huang, D. Liu, C. Zhong, Fabrication of mixed-matrix membrane containing metal–organic framework composite with task-specific ionic liquid for efficient CO2 separation, J. Mater. Chem. 4 (2016) 7281–7288.

[24]

B. Delley, An all-electron numerical method for solving the local density functional for polyatomic molecules, J. Chem. Phys. 92 (1990) 508–517.

[25]

B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 113 (2000) 7756–7764.

[26]

Y. Wang, J.P. Perdew, Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling, Phys. Rev. B 44 (1991) 13298–13307.

[27]

Y. Inada, H. Orita, Efficiency of numerical basis sets for predicting the binding energies of hydrogen bonded complexes: evidence of small basis set superposition error compared to Gaussian basis sets, J. Comput. Chem. 29 (2008) 225–232.

[28]

S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations, J. Phys. Chem. 94 (1990) 8897–8909.

[29]

A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (1992) 10024–10035.

[30]

C.E. Wilmer, K.C. Kim, R.Q. Snurr, An extended charge equilibration method, J. Phys. Chem. Lett. 3 (2012) 2506–2511.

[31]

J.J. Potoff, J.I. Siepmann, Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen, AIChE J. 47 (2001) 1676–1682.

[32]

M.G. Martin, J.I. Siepmann, Transferable potentials for phase equilibria. 1. united-atom description of n-alkanes, J. Phys. Chem. B 102 (1998) 2569–2577.

[33]

M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

[34]

G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Explicit reversible integrators for extended systems dynamics, Mol. Phys. 87 (1996) 1117–1157.

[35]

Z. Li, Y. Xiao, W. Xue, Q. Yang, C. Zhong, Ionic liquid/metal–organic framework composites for H2S removal from natural gas: a computational exploration, J. Phys. Chem. C 119 (2015) 3674–3683.

[36]

R. Babarao, S. Dai, D.-e. Jiang, Understanding the high solubility of CO2 in an ionic liquid with the tetracyanoborate anion, J. Phys. Chem. B 115 (2011) 9789–9794.

[37]

Y. Sun, X. Jia, H. Huang, X. Guo, Z. Qiao, C. Zhong, Solvent-free mechanochemical route for the construction of ionic liquid and mixed-metal MOF composites for synergistic CO2 fixation, J. Mater. Chem. 8 (2020) 3180–3185.

[38]

T. Yan, Y. Lan, M. Tong, C. Zhong, Screening and design of covalent organic framework membranes for CO2/CH4 separation, ACS Sustain. Chem. Eng. 7 (2019) 1220–1227.

[39]

N. Zhang, H. Wu, F. Li, S. Dong, L. Yang, Y. Ren, Y. Wu, X. Wu, Z. Jiang, X. Cao, Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation, J. Membr. Sci. 567 (2018) 272–280.

[40]

Y. Liu, G. Liu, C. Zhang, W. Qiu, S. Yi, V. Chernikova, Z. Chen, Y. Belmabkhout, O. Shekhah, M. Eddaoudi, W. Koros, Enhanced CO2/CH4 separation performance of a mixed matrix membrane based on tailored MOF-polymer formulations, Adv. Sci. 5 (2018) 1800982.

[41]

H.B. Tanh Jeazet, S. Sorribas, J.M. Román-Marín, B. Zornoza, C. Téllez, J. Coronas, C. Janiak, Increased selectivity in CO2/CH4 separation with mixed-matrix membranes of polysulfone and mixed-MOFs MIL-101(Cr) and ZIF-8, Eur. J. Inorg. Chem. (2016) 4363–4367.

[42]

Y. Cheng, Y. Ying, L. Zhai, G. Liu, J. Dong, Y. Wang, M.P. Christopher, S. Long, Y. Wang, D. Zhao, Mixed matrix membranes containing MOF@COF hybrid fillers for efficient CO2/CH4 separation, J. Membr. Sci. 573 (2019) 97–106.

[43]

R. Lin, L. Ge, S. Liu, V. Rudolph, Z. Zhu, Mixed-matrix membranes with metal–organic framework-decorated CNT fillers for efficient CO2 separation, ACS Appl. Mater. Interfaces 7 (2015) 14750–14757.

[44]

S. Sorribas, B. Zornoza, C. Téllez, J. Coronas, Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural- and bio-gas upgrading, J. Membr. Sci. 452 (2014) 184–192.

[45]

S. Castarlenas, C. Téllez, J. Coronas, Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids, J. Membr. Sci. 526 (2017) 205–211.

[46]

H. Li, L. Tuo, K. Yang, H.-K. Jeong, Y. Dai, G. He, W. Zhao, Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: interfacial toughening effect of ionic liquid, J. Membr. Sci. 511 (2016) 130–142.

Green Chemical Engineering
Pages 104-110
Cite this article:
Zhang Z, Jia X, Sun Y, et al. Pore engineering of ZIF-8 with ionic liquids for membrane-based CO2 separation: bearing functional group effect. Green Chemical Engineering, 2021, 2(1): 104-110. https://doi.org/10.1016/j.gce.2020.10.007

222

Views

5

Downloads

19

Crossref

22

Web of Science

25

Scopus

1

CSCD

Altmetrics

Received: 09 September 2020
Revised: 20 October 2020
Accepted: 21 October 2020
Published: 20 November 2020
© 2020 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return