AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Deep eutectic solvents eutectogels: progress and challenges

Jiake WangShangzhong ZhangZhongzheng MaLifeng Yan( )
CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
Show Author Information

HIGHLIGHTS

● Deep eutectic solvents (DESs) are alternative green solvents.

● DESs ion gels composite of DES as solvent or crosslinker.

● DES ion gels own good electrical conductivity, stability, and environmental friendliness.

Graphical Abstract

Abstract

Deep eutectic solvents (DESs) have received widespread attention for their advantages of good electrical conductivity, stability, environmental friendliness, and easy preparation with a wide range of applications. However, it was not until recent years that DESs were used as gel electrolytes as environmentally friendly alternatives to ionic liquids (ILs). In this review, we first introduce the DESs related eutectogels (or ion gels), then introduce the types and applications of the gels, the opportunities and challenges of them are also summarized.

References

[1]

D. Gan, T. Shuai, X. Wang, Z. Huang, X. Lu, Mussel-inspired redox-active and hydrophilic conductive polymer nanoparticles for adhesive hydrogel bioelectronics, Nano-Micro Lett. 12 (2020) 1–16.

[2]

Z. Jia, Y. Zeng, P. Tang, D. Gan, W. Xing, Y. Hou, K. Wang, C. Xie, X. Lu, Conductive, tough, transparent, and self-healing hydrogels based on catechol–metal ion dual self-catalysis, Chem. Mater. 31 (2019) 5625–5632.

[3]

Z. Liu, Y. Wang, Y. Ren, G. Jin, C. Zhang, W. Chen, F. Yan, Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper, Mater. Horizons 7 (2020) 919–927.

[4]

C. Shao, L. Meng, M. Wang, C. Cui, B. Wang, C.R. Han, F. Xu, J. Yang, Mimicking dynamic adhesiveness and strain-stiffening behavior of biological tissues in tough and self-healable cellulose nanocomposite hydrogels, ACS Appl. Mater. Interfaces 11 (2019) 5885–5895.

[5]

H. Wang, J. Wu, J. Qiu, K. Zhang, J. Shao, L. Yan, In situ formation of a renewable cellulose hydrogel electrolyte for high-performance flexible all-solid-state asymmetric supercapacitors, Sustain. Energy Fuels 3 (2019) 3109–3115.

[6]

N. Yang, P. Qi, J. Ren, H. Yu, S. Ling, Polyvinyl alcohol/silk fibroin/borax hydrogel ionotronics: a highly stretchable, self-healable, and biocompatible sensing platform, ACS Appl. Mater. Interfaces 11 (2019) 23632–23638.

[7]

Y. Ye, Y. Zhang, Y. Chen, X. Han, F. Jiang, Cellulose nanofibrils enhanced, strong, stretchable, freezing tolerant ionic conductive organohydrogel for multifunctional sensors, Adv. Funct. Mater. 30 (2020) 2003430.

[8]

Z. Lei, P. Wu, A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation, Nat. Commun. 10 (2019) 3429.

[9]

J. Wu, Z. Wu, Y. Wei, H. Ding, W. Huang, X. Gui, W. Shi, Y. Shen, K. Tao, X. Xie, Ultrasensitive and stretchable temperature sensors based on thermally stable and self-healing organohydrogels, ACS Appl. Mater. Interfaces 12 (2020) 19069–19079.

[10]

X. You, X. Wang, H.J. Zhang, K. Cui, A. Zhang, L. Wang, C. Yadav, X. Li, Supertough lignin hydrogels with multienergy dissipative structures and ultrahigh antioxidative activities, ACS Appl. Mater. Interfaces 12 (2020) 39892–39901.

[11]

S. Tamesue, T. Endo, Y. Ueno, F. Tsurumaki, Sewing hydrogels: adhesion of hydrogels utilizing in situ polymerization of linear polymers inside gel networks, Macromolecules 52 (2019) 5690–5697.

[12]

L. Dai, W. Zhu, J. Lu, F. Kong, C. Si, Y. Ni, A lignin-containing cellulose hydrogel for lignin fractionation, Green Chem. 21 (2019) 5222–5230.

[13]

D. Lou, C. Wang, Z. He, X. Sun, J. Luo, J. Li, Robust organohydrogel with flexibility and conductivity across the freezing and boiling temperatures of water, Chem. Commun. 55 (2019) 8422–8425.

[14]

Y. Wang, F. Chen, Z. Liu, Z. Tang, Q. Yang, Y. Zhao, S. Du, Q. Chen, C. Zhi, A highly elastic and reversibly stretchable all-polymer supercapacitor, Angew. Chem. Int. Ed. 58 (2019) 15707–15711.

[15]

F. Billeci, F. D’Anna, H.Q.N. Gunaratne, N.V. Plechkova, K.R. Seddon, “Sweet” ionic liquid gels: materials for sweetening of fuels, Green Chem. 20 (2018) 4260–4276.

[16]

X. Wang, H. Zhu, M.A. Gaetan, Girard, R. Yunis, D.R. MacFarlane, D. Mecerreyes, A.J. Bhattacharyya, P.C. Howlett, M. Forsyth, Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids, J. Mater. Chem. 5 (2017) 23844–23852.

[17]

P. McNeice, Y. Zhao, J. Wang, G.F. Donnelly, P.C. Marr, Low molecular weight gelators (LMWGs) for ionic liquids: the role of hydrogen bonding and sterics in the formation of stable low molecular weight ionic liquid gels, Green Chem. 19 (2017) 4690–4697.

[18]

A.P.S. Brogan, C.J. Clarke, A. Charalambidou, C.N. Loynachan, S.E. Norman, J. Doutch, J.P. Hallett, Expanding the design space of gel materials through ionic liquid mediated mechanical and structural tuneability, Mater. Horizons 7 (2020) 820–826.

[19]

Y. Ren, J. Guo, Z. Liu, Z. Sun, Y. Wu, L. Liu, F. Yan, Ionic liquid-based click-ionogels, Sci. Adv. 5 (2019) eaax0648.

[20]

D.A. Alonso, A. Baeza, R. Chinchilla, G. Guillena, D. Ramón, Deep eutectic solvents: the organic reaction medium of the century, ChemInform 47 (2016) 612–632.

[21]

X. Tang, M. Zuo, Z. Li, H. Liu, C. Xiong, X. Zeng, Y. Sun, L. Hu, S. Liu, T. Lei, L. Lin, Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents, ChemSusChem 10 (2017) 2696–2706.

[22]

F. delMonte, D. Carriazo, M.C. Serrano, M.C. Gutiérrez, M.L. Ferrer, Deep eutectic solvents in polymerizations: a greener alternative to conventional syntheses, ChemSusChem 7 (2014) 999–1009.

[23]

A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, Natural deep eutectic solvents—solvents for the 21st century, ACS Sustain. Chem. Eng. 2 (2014) 1063–1071.

[24]

X. Ge, C. Gu, X. Wang, J. Tu, Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision, J. Mater. Chem. 5 (2017) 8209–8229.

[25]

A.P. Abbott, D. Boothby, G. Capper, D.L. Davies, R.K. Rasheed, Deep eutectic solvents formed between choline chloride and carboxylic ccids: versatile alternatives to ionic liquids, J. Am. Chem. Soc. 126 (2004) 9142–9147.

[26]

D. Mondal, M. Sharma, C.-H. Wang, Y.-C. Lin, H.-C. Huang, A. Saha, S.K. Nataraj, K. Prasad, Deep eutectic solvent promoted one step sustainable conversion of fresh seaweed biomass to functionalized graphene as a potential electrocatalyst, Green Chem. 18 (2016) 2819–2826.

[27]

J.D. Mota-Morales, R.J. Sánchez-Leija, A. Carranza, J.A. Pojman, F. del Monte, G. Luna-Bárcenas, Free-radical polymerizations of and in deep eutectic solvents: green synthesis of functional materials, Prog. Polym. Sci. 78 (2018) 139–153.

[28]

E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chem. Rev. 114 (2014) 11060–11082.

[29]

S.E. Hooshmand, R. Afshari, D.J. Ramón, R.S. Varma, Deep eutectic solvents: cutting-edge applications in cross-coupling reactions, Green Chem. 22 (2020) 3668–3692.

[30]

V. Gotor-Fernández, C.E. Paul, Deep eutectic solvents for redox biocatalysis, J. Biotechnol. 293 (2019) 24–35.

[31]

X. Liang, Y. Fu, J. Chang, Effective separation, recovery and recycling of deep eutectic solvent after biomass fractionation with membrane-based methodology, Sept. Pur. Technol. 210 (2019) 409–416.

[32]

B. Singh, H. Lobo, G. Shankarling, Selective N-alkylation of aromatic primary amines catalyzed by bio-catalyst or deep eutectic solvent, Catal. Lett. 141 (2011) 178–182.

[33]

D.J.G.P. van Osch, D. Parmentier, C.H.J.T. Dietz, A. van den Bruinhorst, R. Tuinier, M.C. Kroon, Removal of alkali and transition metal ions from water with hydrophobic deep eutectic solvents, Chem. Commun. 52 (2016) 11987–11990.

[34]

M.W. Nam, J. Zhao, M.S. Lee, J.H. Jeong, J. Lee, Enhanced extraction of bioactive natural products using tailor-made deep eutectic solvents: application to flavonoid extraction from Flos sophorae, Green Chem. 17 (2015) 1718–1727.

[35]

A.S.L. Gouveia, F.S. Oliveira, K.A. Kurnia, I.M. Marrucho, Deep eutectic solvents as azeotrope breakers: liquid–liquid extraction and COSMO-RS prediction, ACS Sustain. Chem. Eng. 4 (2016) 5640–5650.

[36]

C. Florindo, L. Romero, I. Rintoul, L.C. Branco, I.M. Marrucho, From phase change materials to green solvents: hydrophobic low viscous fatty acid–based deep eutectic solvents, ACS Sustain. Chem. Eng. 6 (2018) 3888–3895.

[37]

A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of choline chloride/urea mixtures, Chem. Commun. 9 (2003) 70–71.

[38]

L.I.N. Tomé, V. Baião, W. da Silva, C.M.A. Brett, Deep eutectic solvents for the production and application of new materials, Appl. Mater. Today 10 (2018) 30–50.

[39]

C. Florindo, L.C. Branco, I.M. Marrucho, Quest for green-solvent design: from hydrophilic to hydrophobic (deep) eutectic solvents, ChemSusChem 12 (2019) 1481.

[40]

Z. Chen, A. Ragauskas, C. Wan, Lignin extraction and upgrading using deep eutectic solvents, Ind. Crop. Prod. 147 (2020) 112241.

[41]

H. Qin, M.J. Panzer, Chemically cross-linked poly(2-hydroxyethyl methacrylate)- supported deep eutectic solvent gel electrolytes for eco-friendly supercapacitors, ChemElectroChem 4 (2017) 2556–2562.

[42]

S. Hong, Y. Yuan, C. Liu, W. Chen, H. Liimatainen, A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors, J. Mater. Chem. C 8 (2019) 550–560.

[43]

J. Wang, Z. Ma, Y. Wang, J. Shao, L. Yan, Ultra-stretchable, self-healing, conductive, and transparent PAA/DES ionic gel, Macromol. Rapid Commun. 42 (2021) 2000445.

[44]

J.D. Mota-Morales, M. Gutiérrez, M.L. Ferrer, R. Jiménez-Riobóo, G. Luna-Bárcenas, Synthesis of macroporous poly(acrylic acid)-carbon nanotube composites by frontal polymerization in deep-eutectic solvents, J. Mater. Chem. 1 (2013) 3970–3976.

[45]

M. Isik, F. Ruiperez, H. Sardon, A. Gonzalez, S. Zulfiqar, D. Mecerreyes, Innovative poly(ionic liquid)s by the polymerization of deep eutectic monomers, Macromol. Rapid Commun. 37 (2016) 1135–1142.

[46]

R. Li, G. Chen, T. Fan, K. Zhang, M. He, Transparent conductive elastomers with excellent autonomous self-healing capability in harsh organic solvent environments, J. Mater. Chem. 8 (2020) 5056–5061.

[47]

S. Marullo, A. Meli, F. Giannici, F. D'Anna, Supramolecular eutecto gels: fully natural soft materials, ACS Sustain. Chem. Eng. 6 (2018) 12598–12602.

[48]

C. Florindo, L.G. Celia-Silva, L.F.G. Martins, L.C. Branco, I.M. Marrucho, Supramolecular hydrogel based on a sodium deep eutectic solvent, Chem. Commun. 54 (2018) 7527–7530.

[49]

J. Ruiz-Olles, P. Slavik, N.K. Whitelaw, D.K. Smith, Self-assembled gels formed in deep eutectic solvents: supramolecular eutectogels with high ionic conductivity, Angew. Chem. Int. Ed. 58 (2019) 4173–4178.

[50]

K. Zhang, R. Li, G. Chen, J. Yang, J. Tian, M. He, Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions, J. Mater. Chem. 9 (2021) 4890–4897.

[51]

B. Joos, T. Vranken, W. Marchal, M. Safari, M.K. Van Bael, A.T. Hardy, Eutectogels: a new class of solid composite electrolytes for Li/Li-ion batteries, Chem. Mater. 30 (2018) 655–662.

[52]

B. Joos, J. Volders, R.R. da Cruz, E. Baeten, M. Safari, M.K. Van Bael, A.T. Hardy, Polymeric backbone eutectogels as a new generation of hybrid solid-state electrolytes, Chem. Mater. 32 (2020) 3783–3793.

[53]

J.M. Silva, R.L. Reis, A. Paiva, A.R.C. Duarte, Design of functional therapeutic deep eutectic solvents based on choline chloride and ascorbic ccid, ACS Sustain. Chem. Eng. 6 (2018) 10355–10363.

[54]

S. Marullo, A. Meli, N.T. Dintcheva, G. Infurna, C. Rizzo, F. D’Anna, Environmentally friendly eutectogels comprising L-amino acids and deep eutectic solvents: efficient materials for wastewater treatment, ChemPlusChem 85 (2020) 301–311.

[55]

R. Li, K. Zhang, G. Chen, B. Su, J. Tian, M. He, F. Lu, Green polymerizable deep eutectic solvent (PDES) type conductive paper for origami 3D circuits, Chem. Commun. 54 (2018) 2304–2307.

[56]

M. Wang, R. Li, G. Chen, S. Zhou, X. Feng, Y. Chen, M. He, D. Liu, T. Song, H. Qi, Highly stretchable, transparent, and conductive wood fabricated by in situ photopolymerization with polymerizable deep eutectic solvents, ACS Appl. Mater. Interfaces 11 (2019) 14313–14321.

Green Chemical Engineering
Pages 359-367
Cite this article:
Wang J, Zhang S, Ma Z, et al. Deep eutectic solvents eutectogels: progress and challenges. Green Chemical Engineering, 2021, 2(4): 359-367. https://doi.org/10.1016/j.gce.2021.06.001

176

Views

7

Downloads

78

Crossref

90

Web of Science

95

Scopus

2

CSCD

Altmetrics

Received: 25 March 2021
Revised: 28 May 2021
Accepted: 01 June 2021
Published: 06 June 2021
© 2021 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return