PDF (1.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Graphical Abstract
Keywords
References
Show full outline
Hide outline
Perspective | Open Access

Challenges in engineering the structure of ionic liquids towards direct air capture of CO2

Zhenzhen YangaSheng Daia,b()
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
Department of Chemistry, Joint Institute for Advanced Materials, The University of Tennessee, Knoxville, TN, 37996, USA
Show Author Information

Graphical Abstract

View original image Download original image

References

[1]

E.S. Sanz-Pérez, C.R. Murdock, S.A. Didas, C.W. Jones, Direct capture of CO2 from ambient air, Chem. Rev. 116 (2016) 11840–11876.

[2]

S. Zeng, X. Zhang, L. Bai, X. Zhang, H. Wang, J. Wang, D. Bao, M. Li, X. Liu, S. Zhang, Ionic-liquid-based CO2 capture systems: structure, interaction and process, Chem. Rev. 117 (2017) 9625–9673.

[3]

X. Shi, H. Xiao, H. Azarabadi, J. Song, X. Wu, X. Chen, K.S. Lackner, Sorbents for the direct capture of CO2 from ambient air, Angew. Chem. Int. Ed. 59 (2020) 6984–7006.

[4]

S.A. Didas, S. Choi, W. Chaikittisilp, C.W. Jones, Amine–oxide hybrid materials for CO2 capture from ambient air, Acc. Chem. Res. 48 (2015) 2680–2687.

[5]

M. Jahandar Lashaki, S. Khiavi, A. Sayari, Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle, Chem. Soc. Rev. 48 (2019) 3320–3405.

[6]

M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Application of ionic liquids to energy storage and conversion materials and devices, Chem. Rev. 117 (2017) 7190–7239.

[7]

J.E. Bara, C.J. Gabriel, S. Lessmann, T.K. Carlisle, A. Finotello, D.L. Gin, R.D. Noble, Enhanced CO2 separation selectivity in oligo(ethylene glycol) functionalized room-temperature ionic liquids, Ind. Eng. Chem. Res. 46 (2007) 5380–5386.

[8]

E.D. Bates, R.D. Mayton, I. Ntai, J.H. Davis, CO2 capture by a task-specific ionic liquid, J. Am. Chem. Soc. 124 (2002) 926–927.

[9]

B.E. Gurkan, J.C. de la Fuente, E.M. Mindrup, L.E. Ficke, B.F. Goodrich, E.A. Price, W.F. Schneider, J.F. Brennecke, Equimolar CO2 absorption by anion-functionalized ionic liquids, J. Am. Chem. Soc. 132 (2010) 2116–2117.

[10]

A.-H. Liu, R. Ma, C. Song, Z.-Z. Yang, A. Yu, Y. Cai, L.-N. He, Y.-N. Zhao, B. Yu, Q.-W. Song, Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion, Angew. Chem. Int. Ed. 51 (2012) 11306–11310.

[11]

F.-F. Chen, K. Huang, Y. Zhou, Z.-Q. Tian, X. Zhu, D.-J. Tao, D.-E. Jiang, S. Dai, Multi-molar absorption of CO2 by the activation of carboxylate group in amino acid ionic liquids, Angew. Chem. Int. Ed. 55 (2016) 7166–7170.

[12]

C. Wang, X. Luo, H. Luo, D.-E. Jiang, H. Li, S. Dai, Tuning the basicity of ionic liquids for equimolar CO2 capture, Angew. Chem. Int. Ed. 50 (2011) 4918–4922.

[13]

X. Luo, Y. Guo, F. Ding, H. Zhao, G. Cui, H. Li, C. Wang, Significant improvements in CO2 capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions, Angew. Chem. Int. Ed. 53 (2014) 7053–7057.

[14]

Y. Huang, G. Cui, Y. Zhao, H. Wang, Z. Li, S. Dai, J. Wang, Preorganization and cooperation for highly efficient and reversible capture of low-concentration CO2 by ionic liquids, Angew. Chem. Int. Ed. 56 (2017) 13293–13297.

[15]

C. Wang, H. Luo, D.-E. Jiang, H. Li, S. Dai, Carbon dioxide capture by superbase-derived protic ionic liquids, Angew. Chem. Int. Ed. 49 (2010) 5978–5981.

[16]

J. Wang, Y. Zhao, B.P. Setzler, S. Rojas-Carbonell, C. Ben Yehuda, A. Amel, M. Page, L. Wang, K. Hu, L. Shi, S. Gottesfeld, B. Xu, Y. Yan, Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells, Nat. Energy 4 (2019) 392–398.

Green Chemical Engineering
Pages 342-345
Cite this article:
Yang Z, Dai S. Challenges in engineering the structure of ionic liquids towards direct air capture of CO2. Green Chemical Engineering, 2021, 2(4): 342-345. https://doi.org/10.1016/j.gce.2021.08.003
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return