AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Engineering Escherichia coli for high-yield production of ectoine

Daoan Wanga,cJiamin Chena,cYang Wanga,b( )Guocheng Dua,bZhen Kanga,b( )
The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
Show Author Information

HIGHLIGHTS

· RBS sequences were designed to finetune the expression of EctA, EctB and EctC.

· Heterologous aspartate kinase and aspartate-semialdehyde dehydrogenase were introduced to enhance ectoine precursor supply.

· A high yield of 60.7 g L-1 of ectoine with a conversion rate of 0.25 g/g from glucose was achieved.

Graphical Abstract

Abstract

Ectoine is a natural macromolecule protector and synthesized by some extremophiles. It provides protections against radiation-mediated oxidative damages and is widely used as a bioactive ingredient in pharmaceutics and cosmetics. To meet its growing commercial demands, we engineered Escherichia coli strains for the high-yield production of ectoine. The ectABC gene cluster from the native ectoine producer Halomonas elongata was introduced into different Escherichia coli (E. Coil) strains via plasmids and 0.8 g L-1 of ectoine was produced in flask cultures by engineered E. coli BL21 (DE3). Subsequently, we designed the ribosome-binding sites of the gene cluster to fine-tune the expressions of genes ectA, ectB, and ectC, which increased the ectoine yield to 1.6 g L-1. After further combinatorial overexpression of Corynebacterium glutamicum aspartate kinase mutant (G1A, C932T) and the H. elongate aspartate-semialdehyde dehydrogenase to increase the supply of the precursor, the titer of ectoine reached to 5.5 g L-1 in flask cultures. Finally, the engineered strain produced 60.7 g L-1 ectoine in fed-batch cultures with a conversion rate of 0.25 g/g glucose.

References

[1]

J. Wittmar, S. Meyer, T. Sieling, J. Kunte, J. Smiatek, I. Brand, What does ectoine do to DNA? A molecular-scale picture of compatible solute-biopolymer interactions, J. Phys. Chem. B 124 (2020) 7999–8011.

[2]

G. Lentzen, T. Schwarz, Extremolytes: natural compounds from extremophiles for versatile applications, Appl. Microbiol. Biotechnol. 72 (2006) 623–634.

[3]

M. Kanapathipillai, G. Lentzen, M. Sierks, C.B. Park, Ectoine and hydroxyectoine inhibit aggregation and neurotoxicity of Alzheimer's beta-amyloid, FEBS Lett. 579 (2005) 4775–4780.

[4]

R. Graf, S. Anzali, J. Buenger, F. Pfluecker, H. Driller, The multifunctional role of ectoine as a natural cell protectant, Clin. Dermatol. 26 (2008) 326–333.

[5]

J.M. Pastor, M. Salvador, M. Argandona, V. Bernal, M. Reina-Bueno, L.N. Csonka, J.L. Iborra, C. Vargas, J.J. Nieto, M. Canovas, Ectoines in cell stress protection: uses and biotechnological production, Biotechnol. Adv. 28 (2010) 782–801.

[6]

A. Bownik, Z. Stepniewska, Ectoine as a promising protective agent in humans and animals, Arh. Hig. Rada. Toksikol. 67 (2016) 260–265.

[7]

M.J. Salar-Garcia, V. Bernal, J.M. Pastor, M. Salvador, M. Argandona, J.J. Nieto, C. Vargas, M. Canovas, Understanding the interplay of carbon and nitrogen supply for ectoines production and metabolic overflow in high density cultures of Chromohalobacter salexigens, Microb. Cell Factories 16 (2017) 23.

[8]

H. Kunte, G. Lentzen, E. Galinski, Industrial production of the cell protectant ectoine: protection mechanisms, processes, and products, Curr. Biotechnol. 3 (2014) 10–25.

[9]

J. Becker, C. Wittmann, Microbial production of extremolytes-high-value active ingredients for nutrition, health care, and well-being, Curr. Opin. Biotechnol. 65 (2020) 118–128.

[10]

E.A. Galinski, H.P. Pfeiffer, H.G. Truper, 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid, Eur. J. Biochem. 149 (1985) 135–139.

[11]

P. Peters, E.A. Galinski, H.G. Trüper, The biosynthesis of ectoine, FEMS Microbiol. Lett. 71 (1990) 157–162.

[12]

A.S. Reshetnikov, V.N. Khmelenina, Y.A. Trotsenko, Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph “Methylomicrobium alcaliphilum 20Z”, Arch. Microbiol. 184 (2006) 286–297.

[13]

B. Zhao, W. Lu, L. Yang, B. Zhang, L. Wang, S.S. Yang, Cloning and characterization of the genes for biosynthesis of the compatible solute ectoine in the moderately halophilic bacterium Halobacillus dabanensis D-8(T), Curr. Microbiol. 53 (2006) 183–188.

[14]

P. Louis, E.A. Galinski, Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli, Microbiology 143 (1997) 1141–1149.

[15]

D. Canovas, C. Vargas, F. Iglesias-Guerra, L.N. Csonka, D. Rhodes, A. Ventosa, J.J. Nieto, Isolation and characterization of salt-sensitive mutants of the moderate halophile Halomonas elongata and cloning of the ectoine synthesis genes, J. Biol. Chem. 272 (1997) 25794–25801.

[16]

M.I. Calderon, C. Vargas, F. Rojo, F. Iglesias-Guerra, L.N. Csonka, A. Ventosa, J.J. Nieto, Complex regulation of the synthesis of the compatible solute ectoine in the halophilic bacterium Chromohalobacter salexigens DSM 3043T, Microbiology 150 (2004) 3051–3063.

[17]

C.C. Lo, C.A. Bonner, G. Xie, M. D'Souza, R.A. Jensen, Cohesion group approach for evolutionary analysis of aspartokinase, an enzyme that feeds a branched network of many biochemical pathways, Microbiol. Mol. Biol. 73 (2009) 594–651.

[18]

L.M. Stiller, E.A. Galinski, E. Witt, Engineering the salt-inducible ectoine promoter region of Halomonas elongata for protein expression in a unique stabilizing environment, Genes 9 (2018) 184.

[19]

T. Sauer, E.A. Galinski, Bacterial milking: a novel bioprocess for production of compatible solutes, Biotechnol. Bioeng. 57 (1998) 306–313.

[20]

R.H. Reed, S.R.C. Warr, N.W. Kerby, W.D.P. Stewart, Osmotic shock-induced release of low molecular weight metabolites from free-living and immobilized cyanobacteria, Enzym. Microb. Technol. 8 (1986) 101–104.

[21]

Q. Qin, C. Ling, Y. Zhao, T. Yang, J. Yin, Y. Guo, G.Q. Chen, CRISPR/Cas9 editing genome of extremophile Halomonas spp, Metab. Eng. 47 (2018) 219–229.

[22]

H. Zhao, H.M. Zhang, X. Chen, T. Li, Q. Wu, Q. Ouyang, G.Q. Chen, Novel T7-like expression systems used for Halomonas, Metab. Eng. 39 (2017) 128–140.

[23]

R. Shen, Z.Y. Ning, Y.X. Lan, J.C. Chen, G.Q. Chen, Manipulation of polyhydroxyalkanoate granular sizes in Halomonas bluephagenesis, Metab. Eng. 54 (2019) 117–126.

[24]

G.Q. Chen, X.R. Jiang, Next generation industrial biotechnology based on extremophilic bacteria, Curr. Opin. Biotechnol. 50 (2018) 94–100.

[25]

Y. Lin, Y. Guan, X. Dong, Y. Ma, X. Wang, Y. Leng, F. Wu, J.W. Ye, G.Q. Chen, Engineering Halomonas bluephagenesis as a chassis for bioproduction from starch, Metab. Eng. 64 (2021) 134–145.

[26]

H. Ma, Y. Zhao, W. Huang, L. Zhang, F. Wu, J. Ye, G.Q. Chen, Rational flux-tuning of Halomonas bluephagenesis for co-production of bioplastic PHB and ectoine, Nat. Commun. 11 (2020) 3313.

[27]

T. Bestvater, P. Louis, E.A. Galinski, Heterologous ectoine production in Escherichia coli: by-passing the metabolic bottle-neck, Saline Syst. 4 (2008) 12.

[28]

J. Becker, R. Schafer, M. Kohlstedt, B.J. Harder, N.S. Borchert, N. Stoveken, E. Bremer, C. Wittmann, Systems metabolic engineering of Corynebacterium glutamicum for production of the chemical chaperone ectoine, Microb. Cell Factories 12 (2013) 110.

[29]

T. Schubert, T. Maskow, D. Benndorf, H. Harms, U. Breuer, Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium, Appl. Environ. Microbiol. 73 (2007) 3343–3347.

[30]

J. Chen, P. Liu, X. Chu, J. Chen, H. Zhang, D.C. Rowley, H. Wang, Metabolic pathway construction and optimization of Escherichia coli for high-level ectoine production, Curr. Microbiol. 77 (2020) 1412–1418.

[31]

Y.Z. He, J. Gong, H.Y. Yu, Y. Tao, S. Zhang, Z.Y. Dong, High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli, Microb. Cell Factories 14 (2015) 55.

[32]

S. Zhang, Y. Fang, L. Zhu, H. Li, Z. Wang, Y. Li, X. Wang, Metabolic engineering of Escherichia coli for efficient ectoine production, Syst. Microbiol. Biomanuf. 1 (2021) 444–458.

[33]

Y. Ning, X. Wu, C. Zhang, Q. Xu, N. Chen, X. Xie, Pathway construction and metabolic engineering for fermentative production of ectoine in Escherichia coli, Metab. Eng. 36 (2016) 10–18.

[34]

I.P. Parwata, D. Wahyuningrum, S. Suhandono, R. Hertadi, Heterologous ectoine production in Escherichia coli: optimization using response surface methodology, Internet J. Microbiol. 2019 (2019) 5475361.

[35]

Y. Dong, H. Zhang, X. Wang, J. Ma, P. Lei, H. Xu, S. Li, Enhancing ectoine production by recombinant Escherichia coli through step-wise fermentation optimization strategy based on kinetic analysis, Bioproc. Biosyst. Eng. 44 (2021) 1557–1566.

[36]

S.H. Yoon, M.J. Han, H. Jeong, C.H. Lee, X.X. Xia, D.H. Lee, J.H. Shim, S.Y. Lee, T.K. Oh, J.F. Kim, Comparative multi-omics systems analysis of Escherichia coli strains B and K-12, Genome Biol. 13 (2012) R37.

[37]

K. Marisch, K. Bayer, T. Scharl, J. Mairhofer, P.M. Krempl, K. Hummel, E. Razzazi-Fazeli, G. Striedner, A comparative analysis of industrial Escherichia coli K-12 and B strains in high-glucose batch cultivations on process-, transcriptome- and proteome level, PloS One 8 (2013) e70516.

[38]
S.H. Yoon, H. Jeong, S.-K. Kwon, J.F. Kim, Genomics, biological features, and biotechnological applications of Escherichia coli B: “is B for better?!”, in: S.Y. Lee (Ed.), Systems Biology and Biotechnology of Escherichia coli, Springer, Dordrecht, 2009, pp. 1–17.
[39]

J. Lian, R. Jin, H. Zhao, Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration, Biotechnol. Bioeng. 113 (2016) 2462–2473.

[40]

K.L. Jones, S.W. Kim, J.D. Keasling, Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria, Metab. Eng. 2 (2000) 328–338.

[41]

A.C. Reis, H.M. Salis, An automated model test system for systematic development and improvement of gene expression models, ACS Synth. Biol. 9 (2020) 3145–3156.

[42]

H.M. Salis, E.A. Mirsky, C.A. Voigt, Automated design of synthetic ribosome binding sites to control protein expression, Nat. Biotechnol. 27 (2009) 946–950.

[43]

S. Li, Z. Ye, E.A. Moreb, J.N. Hennigan, D.B. Castellanos, T. Yang, M.D. Lynch, Dynamic control over feedback regulatory mechanisms improves NADPH flux and xylitol biosynthesis in engineered E. coli, Metab. Eng. 64 (2021) 26–40.

[44]

W. Chen, S. Zhang, P. Jiang, J. Yao, Y. He, L. Chen, X. Gui, Z. Dong, S.Y. Tang, Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis, Metab. Eng. 30 (2015) 149–155.

[45]

L. Marschall, P. Sagmeister, C. Herwig, Tunable recombinant protein expression in E. coli: enabler for continuous processing, Appl. Microbiol. Biotechnol. 100 (2016) 5719–5728.

[46]

Z. Kang, C. Zhang, J. Zhang, P. Jin, J. Zhang, G. Du, J. Chen, Small RNA regulators in bacteria: powerful tools for metabolic engineering and synthetic biology, Appl. Microbiol. Biotechnol. 98 (2014) 3413–3424.

[47]

T. Sander, N. Farke, C. Diehl, M. Kuntz, T. Glatter, H. Link, Allosteric feedback inhibition enables robust amino acid biosynthesis in E. coli by enforcing enzyme overabundance, Cell Syst. 8 (2019) 66–75.

[48]

H. Li, B. Wang, L. Zhu, S. Cheng, Y. Li, L. Zhang, Z.Y. Ding, Z.H. Gu, G.Y. Shi, Metabolic engineering of Escherichia coli W3110 for L-homoserine production, Process Biochem. 51 (2016) 1973–1983.

[49]

H. Zhao, Y. Fang, X. Wang, L. Zhao, J. Wang, Y. Li, Increasing L-threonine production in Escherichia coli by engineering the glyoxylate shunt and the L-threonine biosynthesis pathway, Appl. Microbiol. Biotechnol. 102 (2018) 5505–5518.

[50]

K.H. Lee, J.H. Park, T.Y. Kim, H.U. Kim, S.Y. Lee, Systems metabolic engineering of Escherichia coli for L-threonine production, Mol. Syst. Biol. 3 (2007) 149.

[51]

J. Xu, M. Han, X. Ren, W. Zhang, Modification of aspartokinase Ⅲ and dihydrodipicolinate synthetase increases the production of L-lysine in Escherichia coli, Biochem. Eng. J. 114 (2016) 79–86.

[52]

X. Piao, L. Wang, B. Lin, H. Chen, W. Liu, Y. Tao, Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative beta-alanine with high stoichiometric yield, Metab. Eng. 54 (2019) 244–254.

[53]

M.A. Koffas, G.Y. Jung, J.C. Aon, G. Stephanopoulos, Effect of pyruvate carboxylase overexpression on the physiology of Corynebacterium glutamicum, Appl. Environ. Microbiol. 68 (2002) 5422–5428.

[54]

Y. Li, H.J. Ogola, Y. Sawa, L-aspartate dehydrogenase: features and applications, Appl. Microbiol. Biotechnol. 93 (2012) 503–516.

[55]

J. Becker, O. Zelder, S. Hafner, H. Schroder, C. Wittmann, From zero to hero-designbased systems metabolic engineering of Corynebacterium glutamicum for L-lysine production, Metab. Eng. 13 (2011) 159–168.

[56]

A.A. Richter, C.N. Mais, L. Czech, K. Geyer, A. Hoeppner, S.H.J. Smits, T.J. Erb, G. Bange, E. Bremer, Biosynthesis of the stress-protectant and chemical chaperon ectoine: biochemistry of the transaminase EctB, Front. Microbiol. 10 (2019) 2811.

[57]

C. Fallet, P. Rohe, E. Franco-Lara, Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo-osmotic stress, Biotechnol. Bioeng. 107 (2010) 124–133.

[58]

G. Giesselmann, D. Dietrich, L. Jungmann, M. Kohlstedt, E.J. Jeon, S.S. Yim, F. Sommer, D. Zimmer, T. Muhlhaus, M. Schroda, K.J. Jeong, J. Becker, C. Wittmann, Metabolic engineering of Corynebacterium glutamicum for high-level ectoine production: design, combinatorial assembly, and implementation of a transcriptionally balanced heterologous ectoine pathway, Biotechnol. J. 14 (2019) e1800417.

Green Chemical Engineering
Pages 217-223
Cite this article:
Wang D, Chen J, Wang Y, et al. Engineering Escherichia coli for high-yield production of ectoine. Green Chemical Engineering, 2023, 4(2): 217-223. https://doi.org/10.1016/j.gce.2021.09.002

263

Views

9

Downloads

9

Crossref

8

Web of Science

9

Scopus

0

CSCD

Altmetrics

Received: 27 July 2021
Revised: 15 September 2021
Accepted: 16 September 2021
Published: 20 September 2021
© 2021 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return