PDF (6.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
HIGHLIGHTS
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Research Article | Open Access

Crafting of plasmonic Au nanoparticles coupled ultrathin BiOBr nanosheets heterostructure: steering charge transfer for efficient CO2 photoreduction

Gaopeng Liua,1Lin Wanga,1Xin ChenaXingwang ZhuaBin WangaXinyuan XuaZiran ChenbWenshuai Zhua()Huaming LiaJiexiang Xiaa()
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
Department of Architecture and Environment Engineering, Sichuan Vocational and Technical College, Suining, 629000, China

1 These authors contributed equally to this work.

Show Author Information

HIGHLIGHTS

● Au nanoparticles coupled ultrathin BiOBr nanosheets heterostructure has been constructed via photoreduction strategy.

● Au nanoparticles serve as 'electron sink', achieving an ultra-fast charge transfer.

● BiOBr and plasmonic Au nanoparticles synchronous accelerates the CO2 molecule activation.

Graphical Abstract

View original image Download original image

Abstract

Integrating semiconductor photocatalysts with outstanding visible light absorption and fast surface/interface charge transfer kinetics is still an enormous challenge for efficient CO2 photoreduction. In this work, the Au nanoparticles have been coupled with ultrathin BiOBr nanosheets, the formed heterostructure (Au/BiOBr) possesses a localized surface plasmon resonance (LSPR) and enhances the visible light absorption ability, as well as forms a fast charge transport channel on the interface between Au and BiOBr. Thus, the heterostructure photocatalyst exhibits higher photocatalytic CO2 to CO performance (135.3/16.43 μmol g−1) than that of BiOBr (89.0/6.46 μmol g−1) under 300 W Xe lamp and visible light (λ > 400 nm) irradiation for 5 h, respectively. Finally, the in situ FT-IR spectroscopy revealed CO2 photoreduction process and found that the *COOH is the key intermediate for CO2 to CO. This work provides an effective method to construct multielectron transfer scheme for efficient photocatalytic CO2 reduction.

References

[1]

H.B. Zhang, Y. Wang, S.W. Zuo, W. Zhou, J. Zhang, X.W. Lou, Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction, J. Am. Chem. Soc. 143 (2021) 2173–2177.

[2]

Y. Dou, S.-M. Xu, A. Zhou, H. Wang, J. Zhou, H. Yan, J.-R. Li, Hierarchically structured semiconductor@noble-metal@MOF for high-performance selective photocatalytic CO2 reduction, Green Chem. Eng. 1 (2020) 48–55.

[3]

X.Y. Jiang, Z.Y. Zhang, M.H. Sun, W.Z. Liu, J.D. Huang, H.Y. Xu, Self-assembly of highly-dispersed phosphotungstic acid clusters onto graphitic carbon nitride nanosheets as fascinating molecular-scale Z-scheme heterojunctions for photocatalytic solar-to-fuels conversion, Appl. Catal., B 281 (2021) 119473.

[4]

Y.X. Li, M.M. Wen, Y. Wang, G. Tian, C.Y. Wang, J.C. Zhao, Plasmonic hot electrons from oxygen vacancies for infrared light-driven catalytic CO2 reduction on Bi2O3-x, Angew. Chem. Int. Ed. 60 (2021) 910–916.

[5]

S. Zhu, X.D. Li, X.C. Jiao, W.W. Shao, L. Li, X.L. Zu, J. Hu, J.F. Zhu, W.S. Yan, C.M. Wang, Y.F. Sun, Y. Xie, Selective CO2 photoreduction into C2 product enabled by charge-polarized metal pair sites, Nano Lett. 21 (2021) 2324–2331.

[6]

X.L. Zu, Y. Zhao, X.D. Li, R.H. Chen, W.W. Shao, Z.Q. Wang, J. Hu, J.F. Zhu, Y. Pan, Y.F. Sun, Y. Xie, Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets, Angew. Chem. Int. Ed. 60 (2021) 13840–13846.

[7]

H. Zhang, J. Wei, X.-G. Zhang, Y.-J. Zhang, P.M. Radjenovica, D.-Y. Wu, F. Pan, Z.-Q. Tian, J.-F. Li, Plasmon-induced interfacial hot-electron transfer directly probed by Raman spectroscopy, Chem 6 (2020) 689–702.

[8]

Y. Kim, J.G. Smith, P.K. Jain, Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles, Nat. Chem. 10 (2018) 763–769.

[9]

Z. Liu, D. Jiang, L.J. Yang, J.Y. Yu, X. Li, X.Y. Liu, L.L. Zhao, X.L. Zhang, F. Han, W.J. Zhou, H. Liu, Plasmon-enhanced hydrogen evolution reaction kinetics through the strong coupling of Au-O bond on Au-MoO2 heterostructure nanosheets, Nano Energy 88 (2021) 106302.

[10]

M.C. Wen, S.N. Song, Q.X. Liu, H.B. Yin, K. Mori, Y. Kuwahara, G.Y. Li, T.C. An, H. Yamashit, Manipulation of plasmon-induced hot electron transport in Pd/MoO3-x@ZIF-8: boosting the activity of Pd-catalyzed nitroaromatic hydrogenation under visible-light irradiation, Appl. Catal., B 282 (2021) 119511.

[11]

H. Li, L.Z. Zhang, Oxygen vacancy induced selective silver deposition on the {001} facets of BiOCl single-crystalline nanosheets for enhanced Cr(VI) and sodium pentachlorophenate removal under visible light, Nanoscale 6 (2014) 7805–7810.

[12]

Y.-Y. Yang, X.-G. Zhang, C.-G. Niu, H.-P. Feng, P.-Z. Qin, H. Guo, C. Liang, L. Zhang, H.-Y. Liu, L. Li, Dual-channel charges transfer strategy with synergistic effect of Z-scheme heterojunction and LSPR effect for enhanced quasi-full-spectrum photocatalytic bacterial inactivation: new insight into interfacial charge transfer and molecular oxygen activation, Appl. Catal., B 264 (2020) 118465.

[13]

T. Kashyap, S. Biswasi, A.R. Pal, B. Choudhury, Unraveling the catalytic and plasmonic roles of g-C3N4 supported Ag and Au nanoparticles under selective photoexcitation, ACS Sustain. Chem. Eng. 7 (2019) 19295–19302.

[14]

S.Y. Wang, Y.Y. Gao, S. Miao, T.F. Liu, L.C. Mu, R.G. Li, F.T. Fan, C. Li, Positioning the water oxidation reaction sites in plasmonic photocatalysts, J. Am. Chem. Soc. 139 (2017) 11771–11778.

[15]

K. Wang, J.B. Lu, Y. Lu, C.H. Lau, Y. Zheng, X.F. Fan, Unravelling the C-C coupling in CO2 photocatalytic reduction with H2O on Au/TiO2-x: combination of plasmonic excitation and oxygen vacancy, Appl. Catal., B 292 (2021) 120147.

[16]

Y.Y. Chen, H.L. Tian, W.X. Zhu, X. Zhang, R.P. Li, C.C. Chen, Y.P. Huang, L-Cysteine directing synthesis of BiOBr nanosheets for efficient cefazolin photodegradation: the pivotal role of thiol, J. Hazard Mater. 414 (2021) 125544.

[17]

J.L. Zhao, Z.R. Miao, Y.F. Zhang, G.Y. Wen, L.H. Liu, X.X. Wang, X.Z. Cao, B.Y. Wang, Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO2 photoreduction activity, J. Colloid Interface Sci. 593 (2021) 231–243.

[18]

T. Zhang, M. Maihemllti, K. Okitsu, D. Talifur, Y. Tursun, A. Abulizi, In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO2 reduction, Appl. Surf. Sci. 556 (2021) 149828.

[19]

J. Di, J.X. Xia, M.F. Chisholm, J. Zhong, C. Chen, X.Z. Cao, F. Dong, Z. Chi, H.L. Chen, Y.-X. Weng, J. Xiong, S.-Z. Yang, H.M. Li, Z. Liu, S. Dai, Defects-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation, Adv. Mater. 31 (2019) 1807576.

[20]

B. Wang, S.-Z. Yang, H.L. Chen, Q. Gao, Y.-X. Weng, W.S. Zhu, G.P. Liu, Y. Zhang, Y.Z. Ye, H.Y. Zhu, H.M. Li, J.X. Xia, Revealing the role of oxygen vacancies in bimetallic PbBiO2Br atomic layers for boosting photocatalytic CO2 conversion, Appl. Catal., B 277 (2020) 119170.

[21]

C.R. Zheng, C.B. Cao, Z. Ali, In situ formed Bi/BiOBrxI1-x heterojunction of hierarchical microspheres for efficient visible-light photocatalytic activity, Phys. Chem. Chem. Phys. 17 (2015) 13347–13354.

[22]

W. Zhao, C.X. Yang, J.D. Huang, X.L. Jin, Y. Deng, L. Wang, F.Y. Sun, H.Q. Xie, P.K. Wong, L.Q. Ye, Selective aerobic oxidation of sulfides to sulfoxides in water under blue light irradiation over Bi4O5Br2, Green Chem. 22 (2020) 4884–4889.

[23]

C.S. Guo, Y. He, P. Du, X. Zhao, J.P. Lv, W. Meng, Y. Zhang, J. Xu, Novel magnetically recoverable BiOBr/iron oxides heterojunction with enhanced visible light-driven photocatalytic activity, Appl. Surf. Sci. 320 (2014) 383–390.

[24]

M. Shang, W.Z. Wang, L. Zhang, Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template, J. Hazard. Mater. 167 (2009) 803–809.

[25]

J.T. Dong, H.N. Li, P.C. Yan, L. Xu, J.M. Zhang, J.C. Qian, J.P. Chen, H.M. Li, A composite prepared from BiOBr and gold nanoparticles with electron sink and hot-electron donor properties for photoelectrochemical aptasensing of tetracycline, Microchim. Acta 186 (2019) 794.

[26]

X.W. Wang, W.Y. Wang, Y.Q. Miao, G. Feng, R.B. Zhang, Facet-selective photodeposition of gold nanoparticles on faceted ZnO crystals for visible light photocatalysis, J. Colloid Interface Sci. 475 (2016) 112–118.

[27]

L.L. Zhang, X.P. Yue, J.X. Liu, J.Q. Feng, X.C. Zhang, C.M. Zhang, R. Li, C.M. Fan, Facile synthesis of Bi5O7Br/BiOBr 2D/3D heterostructure as efficient visible-light-driven photocatalyst for pharmaceutical organic degradation, Sep. Purif. Technol. 231 (2020) 115917.

[28]

H. Shang, S. Huang, H. Li, M.Q. Li, S.X. Zhao, J.X. Wang, Z.H. Ai, L.Z. Zhang, Dual-site activation enhanced photocatalytic removal of no with Au/CeO2, Chem. Eng. J. 386 (2020) 124047.

[29]

S.C. Cai, J. Chen, Q. Li, H.P. Jia, Enhanced photocatalytic CO2 reduction with photothermal effect by cooperative effect of oxygen vacancy and Au cocatalyst, ACS Appl. Mater. Interfaces 13 (2021) 14221–14229.

[30]

T.R. Jensen, M.D. Malinsky, C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles, J. Phys. Chem. B 104 (2000) 10549–10556.

[31]

C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J. Phys. Chem. B 105 (2001) 5599–5611.

[32]

Y. Quan, B. Wang, G.P. Liu, H.M. Li, J.X. Xia, Carbonized polymer dots modified ultrathin Bi12O17Cl2 nanosheets Z-scheme heterojunction for robust CO2 photoreduction, Chem. Eng. Sci. 232 (2021) 116338.

[33]

C.F. Guo, K.F. Tian, L. Wang, F. Liang, F.F. Wang, D.L. Chen, J.Q. Ning, Y.J. Zhong, Y. Hu, Approach of fermi level and electron-trap level in cadmium sulfide nanorods via molybdenum doping with enhanced carrier separation for boosted photocatalytic hydrogen production, J. Colloid Interface Sci. 583 (2021) 661–671.

[34]

H. Yang, A short review on heterojunction photocatalysts: carrier transfer behavior and photocatalytic mechanisms, Mater. Res. Bull. 142 (2021) 111406.

[35]

X.W. Zhu, G.L. Zhou, J.J. Yi, P.H. Ding, J.M. Yang, K. Zhong, Y.H. Song, Y.J. Hua, X.L. Zhu, J.J. Yuan, Y.B. She, H.M. Li, H. Xu, Accelerated photoreduction of CO2 to CO over a stable heterostructure with a seamless interface, ACS Appl. Mater. Interfaces 13 (2021) 39523–39532.

[36]

X.W. Li, B. Wang, Y.H. Huang, J. Di, J.X. Xia, W.S. Zhu, H.M. Li, Boosting photocatalytic degradation of RhB via interfacial electronic effects between Fe-based ionic liquid and g-C3N4, Green Energy Environ. 4 (2019) 198–206.

[37]

H.J. Yu, J.Y. Li, Y.H. Zhang, S.Q. Yang, K.L. Han, F. Dong, T.Y. Ma, H.W. Huang, Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction, Angew. Chem. Int. Ed. 58 (2019) 3880–3884.

[38]

S.T. Guan, R.S. Li, X.F. Sun, T. Xian, H. Yang, Construction of novel ternary Au/LaFeO3/Cu2O composite photocatalysts for RhB degradation via photo-Fenton catalysis, Mater. Technol. 36 (2021) 603–615.

[39]

B. Wang, J. Di, L. Lu, S.C. Yan, G.P. Liu, Y.Z. Ye, H.T. Li, W.S. Zhu, H.M. Li, J.X. Xia, Sacrificing ionic liquid-assisted anchoring of carbonized polymer dots on perovskite-like PbBiO2Br for robust CO2 photoreduction, Appl. Catal., B 254 (2019) 551–559.

[40]

H. Guo, C.-G. Niu, C. Liang, H.-Y. Niu, Y.-Y. Yang, H.-Y. Liu, N. Tang, H.-X. Fang, Highly crystalline porous carbon nitride with electron accumulation capacity: promoting exciton dissociation and charge carrier generation for photocatalytic molecular oxygen activation, Chem. Eng. J. 409 (2021) 128030.

[41]

Y.-Y. Yang, H.-P. Feng, C.-G. Niu, D.-W. Huang, H. Guo, C. Liang, H.-Y. Liu, S. Chen, N. Tang, L. Li, Constructing a plasma-based Schottky heterojunction for near-infrared-driven photothermal synergistic water disinfection: synergetic effects and antibacterial mechanisms, Chem. Eng. J. 426 (2021) 131902.

[42]

Y. Li, B.H. Li, D.N. Zhang, L. Cheng, Q.J. Xiang, Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity, ACS Nano 14 (2020) 10552–10561.

[43]

W. Bi, Y.j. Hu, H. Jiang, L. Zhang, C.Z. Li, Revealing the sudden alternation in Pt@h-BN nanoreactors for nearly 100% CO2-to-CH4 photoreduction, Adv. Funct. Mater. 31 (2021) 2010780.

[44]

B. Wang, J.Z. Zhao, H.L. Chen, Y.-X. Weng, H. Tang, Z.R. Chen, W.S. Zhu, Y.B. She, J.X. Xia, H.M. Li, Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction, Appl. Catal., B 293 (2021) 120182.

[45]

X.W. Zhu, J.M. Yang, X.L. Zhu, J.J. Yuan, M. Zhou, X.J. She, Q. Yu, Y.H. Song, Y.B. She, Y.J. Hua, H.M. Li, H. Xu, Exploring deep effects of atomic vacancies on activating CO2 photoreduction via rationally designing indium oxide photocatalysts, Chem. Eng. J. 422 (2021) 129888.

[46]

J. Li, B.J. Huang, Q. Guo, S. Guo, Z.K. Peng, J. Liu, Q.Y. Tian, Y.P. Yang, Q. Xu, Z.Y. Liu, B. Liu, Van der Waals heterojunction for selective visible-light-driven photocatalytic CO2 reduction, Appl. Catal., B 284 (2021) 119733.

[47]

Y.J. Zhang, O. Pluchery, L. Caillard, A.-F. Lamic-Humblot, S. Casale, Y.J. Chabal, M. Salmeron, Sensing the charge state of single gold nanoparticles via work function measurements, Nano Lett. 15 (2015) 51–55.

[48]

Y.W. Liu, Q.L. Chen, D.A. Cullen, Z.X. Xie, T.Q. Lian, Efficient hot electron transfer from small Au nanoparticles, Nano Lett. 20 (2020) 4322–4329.

[49]

Y. Pang, D. Rocca, G. Galli, Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory, Chem. Soc. Rev. 42 (2013) 2437–2469.

[50]

S.W. Cao, B.J. Shen, T. Tong, J.W. Fu, J.G. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction, Adv. Funct. Mater. 28 (2018) 1800136.

Green Chemical Engineering
Pages 157-164
Cite this article:
Liu G, Wang L, Chen X, et al. Crafting of plasmonic Au nanoparticles coupled ultrathin BiOBr nanosheets heterostructure: steering charge transfer for efficient CO2 photoreduction. Green Chemical Engineering, 2022, 3(2): 157-164. https://doi.org/10.1016/j.gce.2021.11.007
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return