AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Crafting of plasmonic Au nanoparticles coupled ultrathin BiOBr nanosheets heterostructure: steering charge transfer for efficient CO2 photoreduction

Gaopeng Liua,1Lin Wanga,1Xin ChenaXingwang ZhuaBin WangaXinyuan XuaZiran ChenbWenshuai Zhua( )Huaming LiaJiexiang Xiaa( )
School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, China
Department of Architecture and Environment Engineering, Sichuan Vocational and Technical College, Suining, 629000, China

1 These authors contributed equally to this work.

Show Author Information

HIGHLIGHTS

● Au nanoparticles coupled ultrathin BiOBr nanosheets heterostructure has been constructed via photoreduction strategy.

● Au nanoparticles serve as 'electron sink', achieving an ultra-fast charge transfer.

● BiOBr and plasmonic Au nanoparticles synchronous accelerates the CO2 molecule activation.

Graphical Abstract

Abstract

Integrating semiconductor photocatalysts with outstanding visible light absorption and fast surface/interface charge transfer kinetics is still an enormous challenge for efficient CO2 photoreduction. In this work, the Au nanoparticles have been coupled with ultrathin BiOBr nanosheets, the formed heterostructure (Au/BiOBr) possesses a localized surface plasmon resonance (LSPR) and enhances the visible light absorption ability, as well as forms a fast charge transport channel on the interface between Au and BiOBr. Thus, the heterostructure photocatalyst exhibits higher photocatalytic CO2 to CO performance (135.3/16.43 μmol g−1) than that of BiOBr (89.0/6.46 μmol g−1) under 300 W Xe lamp and visible light (λ > 400 nm) irradiation for 5 h, respectively. Finally, the in situ FT-IR spectroscopy revealed CO2 photoreduction process and found that the *COOH is the key intermediate for CO2 to CO. This work provides an effective method to construct multielectron transfer scheme for efficient photocatalytic CO2 reduction.

References

[1]

H.B. Zhang, Y. Wang, S.W. Zuo, W. Zhou, J. Zhang, X.W. Lou, Isolated cobalt centers on W18O49 nanowires perform as a reaction switch for efficient CO2 photoreduction, J. Am. Chem. Soc. 143 (2021) 2173–2177.

[2]

Y. Dou, S.-M. Xu, A. Zhou, H. Wang, J. Zhou, H. Yan, J.-R. Li, Hierarchically structured semiconductor@noble-metal@MOF for high-performance selective photocatalytic CO2 reduction, Green Chem. Eng. 1 (2020) 48–55.

[3]

X.Y. Jiang, Z.Y. Zhang, M.H. Sun, W.Z. Liu, J.D. Huang, H.Y. Xu, Self-assembly of highly-dispersed phosphotungstic acid clusters onto graphitic carbon nitride nanosheets as fascinating molecular-scale Z-scheme heterojunctions for photocatalytic solar-to-fuels conversion, Appl. Catal., B 281 (2021) 119473.

[4]

Y.X. Li, M.M. Wen, Y. Wang, G. Tian, C.Y. Wang, J.C. Zhao, Plasmonic hot electrons from oxygen vacancies for infrared light-driven catalytic CO2 reduction on Bi2O3-x, Angew. Chem. Int. Ed. 60 (2021) 910–916.

[5]

S. Zhu, X.D. Li, X.C. Jiao, W.W. Shao, L. Li, X.L. Zu, J. Hu, J.F. Zhu, W.S. Yan, C.M. Wang, Y.F. Sun, Y. Xie, Selective CO2 photoreduction into C2 product enabled by charge-polarized metal pair sites, Nano Lett. 21 (2021) 2324–2331.

[6]

X.L. Zu, Y. Zhao, X.D. Li, R.H. Chen, W.W. Shao, Z.Q. Wang, J. Hu, J.F. Zhu, Y. Pan, Y.F. Sun, Y. Xie, Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets, Angew. Chem. Int. Ed. 60 (2021) 13840–13846.

[7]

H. Zhang, J. Wei, X.-G. Zhang, Y.-J. Zhang, P.M. Radjenovica, D.-Y. Wu, F. Pan, Z.-Q. Tian, J.-F. Li, Plasmon-induced interfacial hot-electron transfer directly probed by Raman spectroscopy, Chem 6 (2020) 689–702.

[8]

Y. Kim, J.G. Smith, P.K. Jain, Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles, Nat. Chem. 10 (2018) 763–769.

[9]

Z. Liu, D. Jiang, L.J. Yang, J.Y. Yu, X. Li, X.Y. Liu, L.L. Zhao, X.L. Zhang, F. Han, W.J. Zhou, H. Liu, Plasmon-enhanced hydrogen evolution reaction kinetics through the strong coupling of Au-O bond on Au-MoO2 heterostructure nanosheets, Nano Energy 88 (2021) 106302.

[10]

M.C. Wen, S.N. Song, Q.X. Liu, H.B. Yin, K. Mori, Y. Kuwahara, G.Y. Li, T.C. An, H. Yamashit, Manipulation of plasmon-induced hot electron transport in Pd/MoO3-x@ZIF-8: boosting the activity of Pd-catalyzed nitroaromatic hydrogenation under visible-light irradiation, Appl. Catal., B 282 (2021) 119511.

[11]

H. Li, L.Z. Zhang, Oxygen vacancy induced selective silver deposition on the {001} facets of BiOCl single-crystalline nanosheets for enhanced Cr(VI) and sodium pentachlorophenate removal under visible light, Nanoscale 6 (2014) 7805–7810.

[12]

Y.-Y. Yang, X.-G. Zhang, C.-G. Niu, H.-P. Feng, P.-Z. Qin, H. Guo, C. Liang, L. Zhang, H.-Y. Liu, L. Li, Dual-channel charges transfer strategy with synergistic effect of Z-scheme heterojunction and LSPR effect for enhanced quasi-full-spectrum photocatalytic bacterial inactivation: new insight into interfacial charge transfer and molecular oxygen activation, Appl. Catal., B 264 (2020) 118465.

[13]

T. Kashyap, S. Biswasi, A.R. Pal, B. Choudhury, Unraveling the catalytic and plasmonic roles of g-C3N4 supported Ag and Au nanoparticles under selective photoexcitation, ACS Sustain. Chem. Eng. 7 (2019) 19295–19302.

[14]

S.Y. Wang, Y.Y. Gao, S. Miao, T.F. Liu, L.C. Mu, R.G. Li, F.T. Fan, C. Li, Positioning the water oxidation reaction sites in plasmonic photocatalysts, J. Am. Chem. Soc. 139 (2017) 11771–11778.

[15]

K. Wang, J.B. Lu, Y. Lu, C.H. Lau, Y. Zheng, X.F. Fan, Unravelling the C-C coupling in CO2 photocatalytic reduction with H2O on Au/TiO2-x: combination of plasmonic excitation and oxygen vacancy, Appl. Catal., B 292 (2021) 120147.

[16]

Y.Y. Chen, H.L. Tian, W.X. Zhu, X. Zhang, R.P. Li, C.C. Chen, Y.P. Huang, L-Cysteine directing synthesis of BiOBr nanosheets for efficient cefazolin photodegradation: the pivotal role of thiol, J. Hazard Mater. 414 (2021) 125544.

[17]

J.L. Zhao, Z.R. Miao, Y.F. Zhang, G.Y. Wen, L.H. Liu, X.X. Wang, X.Z. Cao, B.Y. Wang, Oxygen vacancy-rich hierarchical BiOBr hollow microspheres with dramatic CO2 photoreduction activity, J. Colloid Interface Sci. 593 (2021) 231–243.

[18]

T. Zhang, M. Maihemllti, K. Okitsu, D. Talifur, Y. Tursun, A. Abulizi, In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO2 reduction, Appl. Surf. Sci. 556 (2021) 149828.

[19]

J. Di, J.X. Xia, M.F. Chisholm, J. Zhong, C. Chen, X.Z. Cao, F. Dong, Z. Chi, H.L. Chen, Y.-X. Weng, J. Xiong, S.-Z. Yang, H.M. Li, Z. Liu, S. Dai, Defects-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation, Adv. Mater. 31 (2019) 1807576.

[20]

B. Wang, S.-Z. Yang, H.L. Chen, Q. Gao, Y.-X. Weng, W.S. Zhu, G.P. Liu, Y. Zhang, Y.Z. Ye, H.Y. Zhu, H.M. Li, J.X. Xia, Revealing the role of oxygen vacancies in bimetallic PbBiO2Br atomic layers for boosting photocatalytic CO2 conversion, Appl. Catal., B 277 (2020) 119170.

[21]

C.R. Zheng, C.B. Cao, Z. Ali, In situ formed Bi/BiOBrxI1-x heterojunction of hierarchical microspheres for efficient visible-light photocatalytic activity, Phys. Chem. Chem. Phys. 17 (2015) 13347–13354.

[22]

W. Zhao, C.X. Yang, J.D. Huang, X.L. Jin, Y. Deng, L. Wang, F.Y. Sun, H.Q. Xie, P.K. Wong, L.Q. Ye, Selective aerobic oxidation of sulfides to sulfoxides in water under blue light irradiation over Bi4O5Br2, Green Chem. 22 (2020) 4884–4889.

[23]

C.S. Guo, Y. He, P. Du, X. Zhao, J.P. Lv, W. Meng, Y. Zhang, J. Xu, Novel magnetically recoverable BiOBr/iron oxides heterojunction with enhanced visible light-driven photocatalytic activity, Appl. Surf. Sci. 320 (2014) 383–390.

[24]

M. Shang, W.Z. Wang, L. Zhang, Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template, J. Hazard. Mater. 167 (2009) 803–809.

[25]

J.T. Dong, H.N. Li, P.C. Yan, L. Xu, J.M. Zhang, J.C. Qian, J.P. Chen, H.M. Li, A composite prepared from BiOBr and gold nanoparticles with electron sink and hot-electron donor properties for photoelectrochemical aptasensing of tetracycline, Microchim. Acta 186 (2019) 794.

[26]

X.W. Wang, W.Y. Wang, Y.Q. Miao, G. Feng, R.B. Zhang, Facet-selective photodeposition of gold nanoparticles on faceted ZnO crystals for visible light photocatalysis, J. Colloid Interface Sci. 475 (2016) 112–118.

[27]

L.L. Zhang, X.P. Yue, J.X. Liu, J.Q. Feng, X.C. Zhang, C.M. Zhang, R. Li, C.M. Fan, Facile synthesis of Bi5O7Br/BiOBr 2D/3D heterostructure as efficient visible-light-driven photocatalyst for pharmaceutical organic degradation, Sep. Purif. Technol. 231 (2020) 115917.

[28]

H. Shang, S. Huang, H. Li, M.Q. Li, S.X. Zhao, J.X. Wang, Z.H. Ai, L.Z. Zhang, Dual-site activation enhanced photocatalytic removal of no with Au/CeO2, Chem. Eng. J. 386 (2020) 124047.

[29]

S.C. Cai, J. Chen, Q. Li, H.P. Jia, Enhanced photocatalytic CO2 reduction with photothermal effect by cooperative effect of oxygen vacancy and Au cocatalyst, ACS Appl. Mater. Interfaces 13 (2021) 14221–14229.

[30]

T.R. Jensen, M.D. Malinsky, C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles, J. Phys. Chem. B 104 (2000) 10549–10556.

[31]

C.L. Haynes, R.P. Van Duyne, Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics, J. Phys. Chem. B 105 (2001) 5599–5611.

[32]

Y. Quan, B. Wang, G.P. Liu, H.M. Li, J.X. Xia, Carbonized polymer dots modified ultrathin Bi12O17Cl2 nanosheets Z-scheme heterojunction for robust CO2 photoreduction, Chem. Eng. Sci. 232 (2021) 116338.

[33]

C.F. Guo, K.F. Tian, L. Wang, F. Liang, F.F. Wang, D.L. Chen, J.Q. Ning, Y.J. Zhong, Y. Hu, Approach of fermi level and electron-trap level in cadmium sulfide nanorods via molybdenum doping with enhanced carrier separation for boosted photocatalytic hydrogen production, J. Colloid Interface Sci. 583 (2021) 661–671.

[34]

H. Yang, A short review on heterojunction photocatalysts: carrier transfer behavior and photocatalytic mechanisms, Mater. Res. Bull. 142 (2021) 111406.

[35]

X.W. Zhu, G.L. Zhou, J.J. Yi, P.H. Ding, J.M. Yang, K. Zhong, Y.H. Song, Y.J. Hua, X.L. Zhu, J.J. Yuan, Y.B. She, H.M. Li, H. Xu, Accelerated photoreduction of CO2 to CO over a stable heterostructure with a seamless interface, ACS Appl. Mater. Interfaces 13 (2021) 39523–39532.

[36]

X.W. Li, B. Wang, Y.H. Huang, J. Di, J.X. Xia, W.S. Zhu, H.M. Li, Boosting photocatalytic degradation of RhB via interfacial electronic effects between Fe-based ionic liquid and g-C3N4, Green Energy Environ. 4 (2019) 198–206.

[37]

H.J. Yu, J.Y. Li, Y.H. Zhang, S.Q. Yang, K.L. Han, F. Dong, T.Y. Ma, H.W. Huang, Three-in-one oxygen vacancies: whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoreduction, Angew. Chem. Int. Ed. 58 (2019) 3880–3884.

[38]

S.T. Guan, R.S. Li, X.F. Sun, T. Xian, H. Yang, Construction of novel ternary Au/LaFeO3/Cu2O composite photocatalysts for RhB degradation via photo-Fenton catalysis, Mater. Technol. 36 (2021) 603–615.

[39]

B. Wang, J. Di, L. Lu, S.C. Yan, G.P. Liu, Y.Z. Ye, H.T. Li, W.S. Zhu, H.M. Li, J.X. Xia, Sacrificing ionic liquid-assisted anchoring of carbonized polymer dots on perovskite-like PbBiO2Br for robust CO2 photoreduction, Appl. Catal., B 254 (2019) 551–559.

[40]

H. Guo, C.-G. Niu, C. Liang, H.-Y. Niu, Y.-Y. Yang, H.-Y. Liu, N. Tang, H.-X. Fang, Highly crystalline porous carbon nitride with electron accumulation capacity: promoting exciton dissociation and charge carrier generation for photocatalytic molecular oxygen activation, Chem. Eng. J. 409 (2021) 128030.

[41]

Y.-Y. Yang, H.-P. Feng, C.-G. Niu, D.-W. Huang, H. Guo, C. Liang, H.-Y. Liu, S. Chen, N. Tang, L. Li, Constructing a plasma-based Schottky heterojunction for near-infrared-driven photothermal synergistic water disinfection: synergetic effects and antibacterial mechanisms, Chem. Eng. J. 426 (2021) 131902.

[42]

Y. Li, B.H. Li, D.N. Zhang, L. Cheng, Q.J. Xiang, Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity, ACS Nano 14 (2020) 10552–10561.

[43]

W. Bi, Y.j. Hu, H. Jiang, L. Zhang, C.Z. Li, Revealing the sudden alternation in Pt@h-BN nanoreactors for nearly 100% CO2-to-CH4 photoreduction, Adv. Funct. Mater. 31 (2021) 2010780.

[44]

B. Wang, J.Z. Zhao, H.L. Chen, Y.-X. Weng, H. Tang, Z.R. Chen, W.S. Zhu, Y.B. She, J.X. Xia, H.M. Li, Unique Z-scheme carbonized polymer dots/Bi4O5Br2 hybrids for efficiently boosting photocatalytic CO2 reduction, Appl. Catal., B 293 (2021) 120182.

[45]

X.W. Zhu, J.M. Yang, X.L. Zhu, J.J. Yuan, M. Zhou, X.J. She, Q. Yu, Y.H. Song, Y.B. She, Y.J. Hua, H.M. Li, H. Xu, Exploring deep effects of atomic vacancies on activating CO2 photoreduction via rationally designing indium oxide photocatalysts, Chem. Eng. J. 422 (2021) 129888.

[46]

J. Li, B.J. Huang, Q. Guo, S. Guo, Z.K. Peng, J. Liu, Q.Y. Tian, Y.P. Yang, Q. Xu, Z.Y. Liu, B. Liu, Van der Waals heterojunction for selective visible-light-driven photocatalytic CO2 reduction, Appl. Catal., B 284 (2021) 119733.

[47]

Y.J. Zhang, O. Pluchery, L. Caillard, A.-F. Lamic-Humblot, S. Casale, Y.J. Chabal, M. Salmeron, Sensing the charge state of single gold nanoparticles via work function measurements, Nano Lett. 15 (2015) 51–55.

[48]

Y.W. Liu, Q.L. Chen, D.A. Cullen, Z.X. Xie, T.Q. Lian, Efficient hot electron transfer from small Au nanoparticles, Nano Lett. 20 (2020) 4322–4329.

[49]

Y. Pang, D. Rocca, G. Galli, Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory, Chem. Soc. Rev. 42 (2013) 2437–2469.

[50]

S.W. Cao, B.J. Shen, T. Tong, J.W. Fu, J.G. Yu, 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction, Adv. Funct. Mater. 28 (2018) 1800136.

Green Chemical Engineering
Pages 157-164
Cite this article:
Liu G, Wang L, Chen X, et al. Crafting of plasmonic Au nanoparticles coupled ultrathin BiOBr nanosheets heterostructure: steering charge transfer for efficient CO2 photoreduction. Green Chemical Engineering, 2022, 3(2): 157-164. https://doi.org/10.1016/j.gce.2021.11.007

26

Views

0

Downloads

29

Crossref

30

Web of Science

33

Scopus

0

CSCD

Altmetrics

Received: 28 September 2021
Revised: 27 October 2021
Accepted: 07 November 2021
Published: 07 December 2021
© 2021 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return