AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

FexC enhancing the catalytic activity of FeNx in oxidative dehydration of N-heterocycles

Siyuan Suna,1Zhihui Liua,1Fan Yanga( )Tian QiuaMinjian WangaAndong FengaYing Wangb( )Yongfeng Lia( )
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, 102249, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China

1 The first two authors contributed equally to this work.

Show Author Information

HIGHLIGHTS

● Atomically dispersed Fe on N-doped porous carbon combined with FexC catalysts were synthesized.

● Fe–C–N-800 exhibits excellent catalytic performance on oxidative dehydration of N-heterocycles.

● The relative content of FexC and FeNx is largely dependent on the pyrolysis temperature.

● DFT calculations and controlled trials reveal the synergistic effect of FexC and FeNx.

Graphical Abstract

Abstract

To enhance the catalytic activity by designing metal particles combined with atomically dispersed non-noble metal catalyst is a huge challenge, which yet has not been studied widely in organic reactions. Herein, we describe a simple and efficient method to synthesize FexC combined with Fe single atoms anchored on the N-doped porous carbon by regulating pyrolysis temperature. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and extended X-ray absorption fine structure (EXAFS) spectroscopy corroborate the existence of atomically dispersed Fe and the coordination number between Fe and N atoms. The Fe–N–C-800 catalyst exhibits the highest catalytic activity giving the 97% yield of quinoline in dehydration of 1,2,3,4-tetrahydroquinoline (THQ) reaction at a mild condition (60 ℃, O2 balloon), and it shows good stability with 80% isolated yield after five consecutive dehydration reactions. Moreover, density functional theory (DFT) calculations reveal that coexistence of FexC and FeNx structure exhibits high activity owing to the lowest adsorption energy of co-adsorbed O2 and THQ and the longest N–H bond length of THQ, that is because the existence of FexC induces the charges transfer. Our work may open a new route to design metal particles combined with atomically dispersed non-noble metal catalysts with high activity in organic synthesis.

References

[1]

V. Sridharan, P.A. Suryavanshi, J.C. Menendez, Advances in the chemistry of tetrahydroquinolines, Chem. Rev. 111 (2011) 7157–7259.

[2]

W. Yao, Y. Zhang, X. Jia, Z. Huang, Selective catalytic transfer dehydrogenation of alkanes and heterocycles by an iridium pincer complex, Angew Chem. Int. Ed. Engl. 53 (2014) 1390–1394.

[3]

Á. Vivancos, M. Beller, M. Albrecht, NHC-based iridium catalysts for hydrogenation and dehydrogenation of N-heteroarenes in water under mild conditions, ACS Catal. 8 (2017) 17–21.

[4]

R. Yamaguchi, C. Ikeda, Y. Takahashi, K. Fujita, Homogeneous catalytic system for reversible dehydrogenation-hydrogenation reactions of nitrogen heterocycles with reversible interconversion of catalytic species, J. Am. Chem. Soc. 131 (2009) 8410–8412.

[5]

K.H. He, F.F. Tan, C.Z. Zhou, G.J. Zhou, X.L. Yang, Y. Li, Acceptorless dehydrogenation of N-heterocycles by merging visible-light photoredox catalysis and cobalt catalysis, Angew Chem. Int. Ed. Engl. 56 (2017) 3080–3084.

[6]

K.N. Tseng, A.M. Rizzi, N.K. Szymczak, Oxidant-free conversion of primary amines to nitriles, J. Am. Chem. Soc. 135 (2013) 16352–16355.

[7]

S. Furukawa, A. Suga, T. Komatsu, Highly efficient aerobic oxidation of various amines using Pd3Pb intermetallic compounds as catalysts, Chem. Commun. (Camb) 50 (2014) 3277–3280.

[8]

X.-T. Sun, J. Zhu, Y.-T. Xia, L. Wu, Palladium nanoparticles stabilized by metal-carbon covalent bonds as an expeditious catalyst for the oxidative dehydrogenation of nitrogen heterocycles, ChemCatChem 9 (2017) 2463–2466.

[9]

C. Deraedt, R. Ye, W.T. Ralston, F.D. Toste, G.A. Somorjai, Dendrimer-stabilized metal nanoparticles as efficient catalysts for reversible dehydrogenation/hydrogenation of N-heterocycles, J. Am. Chem. Soc. 139 (2017) 18084–18092.

[10]

M. Amende, C. Gleichweit, K. Werner, S. Schernich, W. Zhao, M.P. Lorenz, O. Hofert, C. Papp, M. Koch, P. Wasserscheid, M. Laurin, H.P. Steinruck, J. Libuda, Model catalytic studies of liquid organic hydrogen carriers: dehydrogenation and decomposition mechanisms of dodecahydro-N-ethylcarbazole on Pt(111), ACS Catal. 4 (2014) 657–665.

[11]

X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. Shui, Fe-N-C electrocatalyst with dense active sites and efficient mass transport for highperformance proton exchange membrane fuel cells, Nat. Catal. 2 (2019) 259–268.

[12]

D. Damodara, R. Arundhathi, P.R. Likhar, Copper nanoparticles from copper aluminum hydrotalcite: an efficient catalyst for acceptor- and oxidant-free dehydrogenation of amines and alcohols, Adv. Synth. Catal. 356 (2014) 189–198.

[13]

K. Mullick, S. Biswas, A.M. Angeles-Boza, S.L. Suib, Heterogeneous mesoporous manganese oxide catalyst for aerobic and additive-free oxidative aromatization of N-heterocycles, Chem. Commun. (Camb) 53 (2017) 2256–2259.

[14]

X. Cui, Y. Li, S. Bachmann, M. Scalone, A.E. Surkus, K. Junge, C. Topf, M. Beller, Synthesis and characterization of iron-nitrogen-doped graphene/core-shell catalysts: efficient oxidative dehydrogenation of N-heterocycles, J. Am. Chem. Soc. 137 (2015) 10652–10658.

[15]

Y. Qian, P. Du, P. Wu, C. Cai, D.F. Gervasio, Chemical nature of catalytic active sites for the oxygen reduction reaction on nitrogen-doped carbon-supported non-noble metal catalysts, J. Phys. Chem. C 120 (2016) 9884–9896.

[16]

H. Yan, C. Su, J. He, W. Chen, Single-atom catalysts and their applications in organic chemistry, J. Mater. Chem. 6 (2018) 8793–8814.

[17]

M. Sun, D. Davenport, H. Liu, J. Qu, M. Elimelech, J. Li, Highly efficient and sustainable non-precious-metal Fe-N-C electrocatalysts for the oxygen reduction reaction, J. Mater. Chem. 6 (2018) 2527–2539.

[18]

X. Huang, T. Shen, T. Zhang, H. Qiu, X. Gu, Z. Ali, Y. Hou, Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species, Adv. Energy Mater. 10 (2019) 1900375–1900396.

[19]

J. Wan, W. Chen, C. Jia, L. Zheng, J. Dong, X. Zheng, Y. Wang, W. Yan, C. Chen, Q. Peng, D. Wang, Y. Li, Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties, Adv. Mater. 30 (2018) 1705369.

[20]

C. Zhao, X. Dai, T. Yao, W. Chen, X. Wang, J. Wang, J. Yang, S. Wei, Y. Wu, Y. Li, Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2, J. Am. Chem. Soc. 139 (2017) 8078–8081.

[21]

P. Zhang, X.F. Chen, J.S. Lian, Q. Jiang, Structural selectivity of CO oxidation on Fe/N/C catalysts, J. Phys. Chem. C 116 (2012) 17572–17579.

[22]

X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M.H. Engelhard, H. Zhang, Y. He, Y. Shao, D. Su, K.L. More, J.S. Spendelow, G. Wu, Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells, Adv. Mater. 30 (2018) 1706758–1706769.

[23]

Y. He, S. Liu, C. Priest, Q. Shi, G. Wu, Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement, Chem. Soc. Rev. 49 (2020) 3484–3524.

[24]

S. Wei, A. Li, J.C. Liu, Z. Li, W. Chen, Y. Gong, Q. Zhang, W.C. Cheong, Y. Wang, L. Zheng, H. Xiao, C. Chen, D. Wang, Q. Peng, L. Gu, X. Han, J. Li, Y. Li, Direct observation of noble metal nanoparticles transforming to thermally stable single atoms, Nat. Nanotechnol. 13 (2018) 856–861.

[25]

C. Rivera-Cárcamo, P. Serp, Single atom catalysts on carbon-based materials, ChemCatChem 10 (2018) 5058–5091.

[26]

G. Kyriakou, M.B. Boucher, A.D. Jewell, E.A. Lewis, T.J. Lawton, A.E. Baber, H.L. Tierney, M. Flytzani-Stephanopoulos, E.C. Sykes, Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations, Science 335 (2012) 1209–1212.

[27]

L. Zhang, A. Wang, W. Wang, Y. Huang, X. Liu, S. Miao, J. Liu, T. Zhang, Co–N–C catalyst for C–C coupling reactions: on the catalytic performance and active sites, ACS Catal. 5 (2015) 6563–6572.

[28]

W. Liu, L. Zhang, X. Liu, X. Liu, X. Yang, S. Miao, W. Wang, A. Wang, T. Zhang, Discriminating catalytically active FeNx species of atomically dispersed Fe-N-C catalyst for selective oxidation of the C-H bond, J. Am. Chem. Soc. 139 (2017) 10790–10798.

[29]

X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, D. Tan, R. Si, S. Zhang, J. Li, L. Sun, Z. Tang, X. Pan, X. Bao, Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen, Science 344 (2014) 616–619.

[30]

X. Ao, W. Zhang, Z. Li, J.G. Li, L. Soule, X. Huang, W.H. Chiang, H.M. Chen, C. Wang, M. Liu, X.C. Zeng, Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters, ACS Nano 13 (2019) 11853–11862.

[31]

S. Han, X. Hu, J. Wang, X. Fang, Y. Zhu, Novel route to Fe-based cathode as an efficient bifunctional catalysts for rechargeable Zn-air battery, Adv. Energy Mater. 8 (2018) 1800955–1800964.

[32]

F. Yang, M. Wang, W. Liu, B. Yang, Y. Wang, J. Luo, Y. Tang, L. Hou, Y. Li, Z. Li, B. Zhang, W. Yang, Y. Li, Atomically dispersed Ni as the active site towards selective hydrogenation of nitroarenes, Green Chem. 21 (2019) 704–711.

[33]

G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50.

[34]

G. Kresse, Ab initio molecular dynamics for liquid metals, J. Non-Cryst. Solids 192–193 (1995) 222–229.

[35]

G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B Condens. Matter 54 (1996) 11169–11186.

[36]

G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B Condens. Matter 49 (1994) 14251–14269.

[37]

P.E. Blochl, Projector augmented-wave method, Phys. Rev. B Condens. Matter 50 (1994) 17953–17979.

[38]

G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999) 1758–1775.

[39]

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

[40]

W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z. Wei, L.J. Wan, Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx, J. Am. Chem. Soc. 138 (2016) 3570–3578.

[41]

A. Gangwar, S. Varghese, S. Meena, C. Prajapat, N. Gupta, N. Prasad, Fe3C nanoparticles for magnetic hyperthermia application, J. Magn. Magn Mater. 481 (2019) 251–256.

[42]

X. Wang, W. Ma, Z. Xu, H. Wang, W. Fan, X. Zong, C. Li, Metal phosphide catalysts anchored on metal-caged graphitic carbon towards efficient and durable hydrogen evolution electrocatalysis, Nano Energy 48 (2018) 500–509.

[43]

H. Yang, L. Shang, Q. Zhang, R. Shi, G.I.N. Waterhouse, L. Gu, T. Zhang, A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts, Nat. Commun. 10 (2019) 4585–4594.

[44]

J. Zhu, M. Xiao, C. Liu, J. Ge, J. St-Pierre, W. Xing, Growth mechanism and active site probing of Fe3C@N-doped carbon nanotubes/C catalysts: guidance for building highly efficient oxygen reduction electrocatalysts, J. Mater. Chem. 3 (2015) 21451–21459.

[45]

J. Xu, L. Zhang, R. Shi, Y. Zhu, Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis, J. Mater. Chem. 1 (2013) 14766–14772.

[46]

D.S. Knight, W.B. White, Characterization of diamond films by Raman spectroscopy, J. Mater. Res. 4 (2011) 385–393.

[47]

J. Zhang, Y. Zhao, C. Chen, Y.C. Huang, C.L. Dong, C.J. Chen, R.S. Liu, C. Wang, K. Yan, Y. Li, G. Wang, Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions, J. Am. Chem. Soc. 141 (2019) 20118–20126.

[48]

A. Varela, N. Sahraie, J. Steinberg, W. Ju, H. Oh, P. Strasser, Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons, Angew. Chem. Int. Ed. 54 (2015) 10758–10762.

[49]

J. Li, S. Ghoshal, W. Liang, M.-T. Sougrati, F. Jaouen, B. Halevi, S. McKinney, G. McCool, C. Ma, X. Yuan, Z.-F. Ma, S. Mukerjee, Q. Jia, Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction, Energy Environ. Sci. 9 (2016) 2418–2432.

[50]

F. Xiao, G.-L. Xu, C.-J. Sun, M. Xu, W. Wen, Q. Wang, M. Gu, S. Zhu, Y. Li, Z. Wei, X. Pan, J. Wang, K. Amine, M. Shao, Nitrogen-coordinated single iron atom catalysts derived from metal organic frameworks for oxygen reduction reaction, Nano Energy 61 (2019) 60–68.

[51]

A. Zitolo, V. Goellner, V. Armel, M.T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials, Nat. Mater. 14 (2015) 937–942.

[52]

K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M.T. Sougrati, F. Jaouen, S. Mukerjee, Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination, Nat. Commun. 6 (2015) 7343–7351.

[53]

K. Bharuth-Ram, H. Masenda, C. Ronning, H. Hofsäss, Fe3C nanoparticle formation in Fe implanted HOPG and CVD diamond, Hyperfine Interact. 240 (2019) 3–8.

[54]

H. Shen, E. Gracia-Espino, J. Ma, H. Tang, X. Mamat, T. Wagberg, G. Hu, S. Guo, Atomically FeN2 moieties dispersed on mesoporous carbon: a new atomic catalyst for efficient oxygen reduction catalysis, Nano Energy 35 (2017) 9–16.

[55]

N.D. Leonard, S. Wagner, F. Luo, J. Steinberg, W. Ju, N. Weidler, H. Wang, U.I. Kramm, P. Strasser, Deconvolution of utilization, site density, and turnover frequency of Fe-nitrogen-carbon oxygen reduction reaction catalysts prepared with secondary N-precursors, ACS Catal. 8 (2018) 1640–1647.

[56]

Z. Zhang, J. Sun, F. Wang, L. Dai, Efficient oxygen reduction reaction (ORR) catalysts based on single iron atoms dispersed on a hierarchically structured porous carbon framework, Angew Chem. Int. Ed. Engl. 57 (2018) 9038–9043.

[57]

X. Zeng, J. Shui, X. Liu, Q. Liu, Y. Li, J. Shang, L. Zheng, R. Yu, Single-atom to single-atom grafting of Pt1 onto Fe-N4 center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties, Adv. Energy Mater. 8 (2018) 1701345–1701353.

[58]

X.W. Liu, S. Zhao, Y. Meng, Q. Peng, A.K. Dearden, C.F. Huo, Y. Yang, Y.W. Li, X.D. Wen, Mossbauer spectroscopy of iron carbides: from prediction to experimental confirmation, Sci. Rep. 6 (2016) 26184–26194.

[59]

U.I. Kramm, I. Herrmann-Geppert, J. Behrends, K. Lips, S. Fiechter, P. Bogdanoff, On an easy way to prepare metal-nitrogen doped carbon with exclusive presence of MeN4-type sites active for the ORR, J. Am. Chem. Soc. 138 (2016) 635–640.

Green Chemical Engineering
Pages 349-358
Cite this article:
Sun S, Liu Z, Yang F, et al. FexC enhancing the catalytic activity of FeNx in oxidative dehydration of N-heterocycles. Green Chemical Engineering, 2022, 3(4): 349-358. https://doi.org/10.1016/j.gce.2021.12.007

112

Views

1

Downloads

5

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 13 October 2021
Revised: 26 November 2021
Accepted: 22 December 2021
Published: 25 December 2021
© 2021 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return