AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A systematic COSMO-RS study on mutual solubility of ionic liquids and C6-hydrocarbons

Chuxin QiZhen Song( )Hongye ChengLifang ChenZhiwen Qi( )
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
Show Author Information

HIGHLIGHTS

· COSMO-RS is a suitable tool for the systems of IL and non-/weak-polar hydrocarbon.

· Mutual solubility database of 13,650 ILs and four C6-hydrocarbons are established.

· Cation & anion have a great effect on mutual solubility of IL and C6-hydrocarbon.

· Misfit & vdW interaction jointly affect mutual solubility of IL and C6-hydrocarbon.

· Misfit interactions are more important in mutual solubility of IL and C6-hydrocarbon.

Graphical Abstract

Abstract

When considering the usage of ionic liquids (ILs) for reactions and separations involving non-polar or weak-polar hydrocarbons, the knowledge of the mutual solubility behaviors of ILs and hydrocarbons is of the utmost importance. In this work, taking four typical C6-hydrocarbons namely benzene, cyclohexene, cyclohexane, and hexane as representatives, the mutual solubility of ILs and non-polar or weak-polar hydrocarbons are systematically studied based on the COSMO-RS model. The reliability of COSMO-RS for these systems is first evaluated by comparing experimental and predicted hydrocarbon-in-IL activity coefficient at infinite dilution and binary/ternary liquid-liquid equilibria of related systems. Then, the mutual solubility of the four hydrocarbons and 13,650 ILs (composed by 210 cations and 65 anions) are predicted. The effect of different IL structural characteristics including alkyl chain length, cation family/symmetry/functional group, and anion on the IL-hydrocarbon mutual solubility behaviors are further analyzed by the analyses of interaction energy and screen charge distribution. The mutual solubility databases and the structural effects identified thereon could provide useful guidance for IL selection in related applications.

References

[1]

A.J. Greer, J. Jacquemin, C. Hardacre, Industrial applications of ionic liquids, Molecules 25 (2020) 5207.

[2]

Z. Song, T. Zhou, Z. Qi, K. Sundmacher, Systematic method for screening ionic liquids as extraction solvents exemplified by an extractive desulfurization process, ACS Sustain. Chem. Eng. 5 (2017) 3382–3389.

[3]

L. Qin, J. Zhang, H. Cheng, L. Chen, Z. Qi, W. Yuan, Selection of imidazolium-based ionic liquids for Vitamin E extraction from deodorizer distillate, ACS Sustain. Chem. Eng. 4 (2016) 583–590.

[4]

Z. Song, X. Hu, Y. Zhou, T. Zhou, Z. Qi, K. Sundmacher, Rational design of double salt ionic liquids as extraction solvents: separation of thiophene/n-octane as example, AIChE J. 65 (2019) e16625.

[5]

Z. Lei, W. Arlt, P. Wasserscheid, Separation of 1-hexene and n-hexane with ionic liquids, Fluid Phase Equil. 241 (2006) 290–299.

[6]

D. Peng, A.-J. Kleiweg, J.G.M. Winkelman, Z. Song, F. Picchioni, A hierarchical hybrid method for screening ionic liquid solvents for extractions exemplified by the extractive desulfurization process, ACS Sustain. Chem. Eng. 9 (2021) 2705–2716.

[7]

M. Aghaie, N. Rezaei, S. Zendehboudi, A systematic review on CO2 capture with ionic liquids: current status and future prospects, Renew. Sustain. Energy Rev. 96 (2018) 502–525.

[8]

J. de Riva, J. Suarez-Reyes, D. Moreno, I. Díaz, V. Ferro, J. Palomar, Ionic liquids for post-combustion CO2 capture by physical absorption: thermodynamic, kinetic and process analysis, Int. J. Greenh. Gas Control 61 (2017) 61–70.

[9]

D. Hospital-Benito, J. Lemus, C. Moya, R. Santiago, J. Palomar, Process analysis overview of ionic liquids on CO2 chemical capture, Chem. Eng. J. 390 (2020) 124509.

[10]

M. Masilela, S. Ndlovu, Extraction of Ag and Au from chloride electronic waste leach solutions using ionic liquids, J. Environ. Chem. Eng. 7 (2019) 102810.

[11]

C.M. Gordon, New developments in catalysis using ionic liquids, Appl. Catal. A 222 (2001) 101–117.

[12]

A. Krishnan, K.P. Gopinath, D.-V.N. Vo, R. Malolan, V.M. Nagarajan, J. Arun, Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review, Environ. Chem. Lett. 18 (2020) 2031–2054.

[13]

V.L. Martins, R.M. Torresi, Ionic liquids in electrochemical energy storage, Curr. Opin. Electrochem. 9 (2018) 26–32.

[14]

S. Zhou, K.S. Panse, M.H. Motevaselian, N.R. Aluru, Y. Zhang, Three-dimensional molecular mapping of ionic liquids at electrified interfaces, ACS Nano 14 (2020) 17515–17523.

[15]

V.V. Chaban, O.V. Prezhdo, Ionic and molecular liquids: working together for robust engineering, J. Phys. Chem. Lett. 4 (2013) 1423–1431.

[16]

V.V. Chaban, Acetone as a polar cosolvent for pyridinium-based ionic liquids, RSC Adv. 6 (2016) 8906–8912.

[17]

H. Chao, Z. Song, H. Cheng, L. Chen, Z. Qi, Computer-aided design and process evaluation of ionic liquids for n-hexane-methylcyclopentane extractive distillation, Separ. Purif. Technol. 196 (2018) 157–165.

[18]

Z. Lei, C. Dai, J. Zhu, B. Chen, Extractive distillation with ionic liquids: a review, AIChE J. 60 (2014) 3312–3329.

[19]

W. Zhang, W. Zhao, S. Ren, Y. Hou, W. Wu, Highly efficient separation of benzene + cyclohexane mixtures by extraction combined extractive distillation using imidazolium-based dicationic ionic liquids, Green Chem. Eng. 4 (2023) 312–323.

[20]

N. Delgado-Mellado, A. Ovejero-Perez, P. Navarro, M. Larriba, M. Ayuso, J. García, F. Rodríguez, Imidazolium and pyridinium-based ionic liquids for the cyclohexane/cyclohexene separation by liquid-liquid extraction, J. Chem. Thermodyn. 131 (2019) 340–346.

[21]

M.Z.M. Salleh, M.K. Hadj-Kali, M.A. Hashim, S. Mulyono, Ionic liquids for the separation of benzene and cyclohexane-COSMO-RS screening and experimental validation, J. Mol. Liq. 266 (2018) 51–61.

[22]

A.R. Ferreira, M.G. Freire, J.C. Ribeiro, F.M. Lopes, J.G. Crespo, J.A.P. Coutinho, Overview of the liquid-liquid equilibria of ternary systems composed of ionic liquid and aromatic and aliphatic hydrocarbons, and their modeling by COSMO-RS, Ind. Eng. Chem. Res. 51 (2012) 3483–3507.

[23]

Z. Lyu, T. Zhou, L. Chen, Y. Ye, K. Sundmacher, Z. Qi, Reprint of: simulation based ionic liquid screening for benzene-cyclohexane extractive separation, Chem. Eng. Sci. 115 (2014) 186–194.

[24]

Z. Song, X. Li, H. Chao, F. Mo, T. Zhou, H. Cheng, L. Chen, Z. Qi, Computer-aided ionic liquid design for alkane/cycloalkane extractive distillation process, Green Energy Environ. 4 (2019) 154–165.

[25]

D. Peng, D.P. Horvat, F. Picchioni, Computer-aided ionic liquid design and experimental validation for benzene-cyclohexane separation, Ind. Eng. Chem. Res. 60 (2021) 4951–4961.

[26]

Y. Lyu, J.F. Brennecke, M.A. Stadtherr, Review of recent aromatic-aliphatic-ionic liquid ternary liquid-liquid equilibria and their modeling by COSMO-RS, Ind. Eng. Chem. Res. 59 (2020) 8871–8893.

[27]

Z. Zhu, X. Li, X. Geng, P. Cui, J. Yang, Y. Wang, Y. Ma, D. Xu, Ternary liquid-liquid equilibrium of toluene + dimethyl carbonate + ILs at 298.15 K and atmospheric pressure, J. Chem. Eng. Data 64 (2019) 3598–3605.

[28]

M. Karpińska, M. Wlazło, M. Zawadzki, U. Domańska, Liquid-liquid separation of hexane/hex-1-ene and cyclohexane/cyclohexene by dicyanamide-based ionic liquids, J. Chem. Thermodyn. 116 (2018) 299–308.

[29]

V. Conte, B. Floris, P. Galloni, V. Mirruzzo, A. Scarso, D. Sordi, G. Strukul, The Pt(Ⅱ)-catalyzed Baeyer-Villiger oxidation of cyclohexanone with H2O2 in ionic liquids, Green Chem. 7 (2005) 262–266.

[30]

L. Chen, T. Zhou, L. Chen, Y. Ye, Z. Qi, H. Freund, K. Sundmacher, Selective oxidation of cyclohexanol to cyclohexanone in the ionic liquid 1-octyl-3-methylimidazolium chloride, Chem. Commun. 47 (2011) 9354–9356.

[31]

L.-J. Jia, Y.-Y. Wang, H. Chen, Y.-K. Shan, Alkylation of benzene with 1-hexene in acidic ionic liquid systems: Et3NHCl-FeCl3and Et3NHCl-AlCl3 ionic liquids, React. Kinet. Catal. Lett. 86 (2005) 267–273.

[32]

G. Abarca, W.D. Gonçalves, B.L. Albuquerque, J. Dupont, M.H. Prechtl, J.D. Scholten, Bimetallic RuPd nanoparticles in ionic liquids: selective catalysts for the hydrogenation of aromatic compounds, New J. Chem. 45 (2021) 98–103.

[33]

V. Beniwal, A. Manna, A. Kumar, Spectacular rate enhancement of the Diels-Alder Reaction at the ionic liquid/n-hexane interface, ChemPhysChem 17 (2016) 1969–1972.

[34]

J.-Y. Wang, F.-Y. Zhao, R.-J. Liu, Y.-Q. Hu, Oxidation of cyclohexane catalyzed by metal-containing ZSM-5 in ionic liquid, J. Mol. Catal. Chem. 279 (2008) 153–158.

[35]

J. Wang, H. Zhao, X. Zhang, R. Liu, Y. Hu, Oxidation of cyclohexane catalyzed by TS-1 in ionic liquid with tert-butyl-hydroperoxide, Chin. J. Chem. Eng. 16 (2008) 373–375.

[36]

T. Zhou, L. Chen, Y. Ye, L. Chen, Z. Qi, K. Sundmacher, An overview of mutual solubility of ionic liquids and water predicted by COSMO-RS, Ind. Eng. Chem. Res. 51 (2012) 6256–6264.

[37]

A. Klamt, The COSMO and COSMO-RS solvation models, Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 (2018) e1338.

[38]

E. Fileti, V.V. Chaban, Solubility origin at the nanoscale: enthalpic and entropic contributions in polar and nonpolar environments, Phys. Chem. Chem. Phys. 19 (2017) 3903–3910.

[39]

M. Jin, Y. Hou, W. Wu, S. Ren, S. Tian, L. Xiao, Z. Lei, Solubilities and thermodynamic properties of SO2 in ionic liquids, J. Phys. Chem. B 115 (2011) 6585–6591.

[40]

K.S. Pedersen, K.M. Nielsen, J. Fonslet, M. Jensen, F. Zhuravlev, Separation of radiogallium from zinc using membrane-based liquid-liquid extraction in flow: experimental and COSMO-RS studies, Solvent Extr, Ion Exch 37 (2019) 376–391.

[41]

Y. Zhang, Q. Zhang, H. Xin, M. Lv, Z. Zhang, COSMO-RS prediction, liquid-liquid equilibrium experiment and quantum chemistry calculation for the separation of n-butanol and n-heptane system using ionic liquids, J. Chem. Thermodyn. 167 (2022) 106719.

[42]

C. Jiang, H. Cheng, Z. Qin, R. Wang, L. Chen, C. Yang, Z. Qi, X. Liu, COSMO-RS prediction and experimental verification of 1,5-pentanediamine extraction from aqueous solution by ionic liquids, Green Energy Environ. 6 (2021) 422–431.

[43]

J. Palomar, M. Gonzalez-Miquel, A. Polo, F. Rodriguez, Understanding the physical absorption of CO2 in ionic liquids using the COSMO-RS method, Ind. Eng. Chem. Res. 50 (2011) 3452–3463.

[44]

W. Zhang, J. Luo, T. Sun, F. Yu, C. Li, The absorption performance of ionic liquids-PEG200 complex absorbent for VOCs, Energies 14 (2021) 3592.

[45]

Z. Song, C. Zhang, Z. Qi, T. Zhou, K. Sundmacher, Computer-aided design of ionic liquids as solvents for extractive desulfurization, AIChE J. 64 (2018) 1013–1025.

[46]

Z. Yang, S. Dai, Challenges in engineering the structure of ionic liquids towards direct air capture of CO2, Green Chem. Eng. 2 (2021) 4.

[47]

A.-S. Rodriguez Castillo, P.-F. Biard, S. Guihéneuf, L. Paquin, A. Amrane, A. Couvert, Assessment of VOC absorption in hydrophobic ionic liquids: measurement of partition and diffusion coefficients and simulation of a packed column, Chem. Eng. J. 360 (2019) 1416–1426.

[48]

J. Wang, Z. Song, X. Li, H. Cheng, L. Chen, Z. Qi, Toward rational functionalization of ionic liquids for enhanced extractive desulfurization: computer-aided solvent design and molecular dynamics simulation, Ind. Eng. Chem. Res. 59 (2020) 2093–2103.

[49]

S. Gao, G. Yu, R. Abro, A.A. Abdeltawab, S.S. Al-Deyab, X. Chen, Desulfurization of fuel oils: mutual solubility of ionic liquids and fuel oil, Fuel 173 (2016) 164–171.

[50]

A. Klamt, F. Eckert, W. Arlt, COSMO-RS: an alternative to simulation for calculating thermodynamic properties of liquid mixtures, Annu. Rev. Chem. Biomol. Eng. 1 (2010) 101–122.

[51]

F. Bezold, M.E. Weinberger, M. Minceva, Assessing solute partitioning in deep eutectic solvent-based biphasic systems using the predictive thermodynamic model COSMO-RS, Fluid Phase Equil. 437 (2017) 23–33.

[52]

E. Hopmann, W. Arlt, M. Minceva, Solvent system selection in counter-current chromatography using conductor-like screening model for real solvents, J. Chromatogr. A 1218 (2011) 242–250.

[53]
F. Eckert, A. Klamt, COSMOtherm (version C2.1). COSMOlogic GmbH & Co. KG: Leverkusen, Germany, 2009., n.d.
[54]

G. Chen, Z. Song, Z. Qi, K. Sundmacher, Neural recommender system for the activity coefficient prediction and UNIFAC model extension of ionic liquid-solute systems, AIChE J. 67 (2021) e17171.

[55]

K. Paduszyński, M. Królikowska, Extensive evaluation of performance of the cosmo-rs approach in capturing liquid-liquid equilibria of binary mixtures of ionic liquids with molecular compounds, Ind. Eng. Chem. Res. 59 (2020) 11851–11863.

[56]

A. Klamt, M. Thormann, K. Wichmann, P. Tosco, COSMOsar3D: molecular field analysis based on local COSMO σ-profiles, J. Chem. Inf. Model. 52 (2012) 2157–2164.

[57]

I. Montes, C.Q. Lai, D. Sanabria, Like dissolves like: a classroom demonstration and a guided-inquiry experiment for organic chemistry, J. Chem. Educ. 80 (2003) 447–449.

[58]

V. Kumar, S.V. Malhotra, Study on the potential anti-cancer activity of phosphonium and ammonium-based ionic liquids, Bioorg. Med. Chem. Lett. 19 (2009) 4643–4646.

[59]

A. Kamimura, Y. Shiramatsu, T. Kawamoto, Depolymerization of polyamide 6 in hydrophilic ionic liquids, Green Energy Environ. 4 (2019) 166–170.

[60]

M. Matsumoto, A. Panigrahi, Y. Murakami, K. Kondo, Effect of ammonium- and phosphonium-based ionic liquids on the separation of lactic acid by supported ionic liquid membranes (SILMs), Membranes 1 (2011) 98–108.

Green Chemical Engineering
Pages 97-107
Cite this article:
Qi C, Song Z, Cheng H, et al. A systematic COSMO-RS study on mutual solubility of ionic liquids and C6-hydrocarbons. Green Chemical Engineering, 2024, 5(1): 97-107. https://doi.org/10.1016/j.gce.2022.11.002

168

Views

8

Downloads

4

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 03 September 2022
Revised: 06 November 2022
Accepted: 23 November 2022
Published: 02 December 2022
© 2022 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return