AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Bifunctional Mo-doped FeCo–Se aerogels catalysts with excellent OER and ORR activities for electro-Fenton process

Fengjiang ChenFan Yang( )Sai CheHongchen LiuChong XuNeng ChenYankun SunChunhui YuZhijie WuYongfeng Li( )
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
Show Author Information

HIGHLIGHTS

· The Mo0.3Fe1Co3–Se MAs catalyst shows excellent OER and 2e- ORR activity.

· OER at the anode ensures the self-supply of O2 in the EF system, avoiding the need for additional O2.

· DFT calculation reveals the effect of Mo doping and selenization for FeCo aerogels in OER and ORR process.

Graphical Abstract

Abstract

Antibiotic pollution in aqueous solutions seriously endangers the natural environment and public health. In this work, Mo-doped transition metal FeCo–Se metal aerogels (MAs) were investigated as bifunctional catalysts for the removal of sulfamethazine (SMT) in solution. The optimal Mo0.3Fe1Co3–Se catalyst can remove 97.7% of SMT within 60 min (SMT content: 10 mg/L, current intensity: 10 mA/cm2). The unique porous cross-linked structure of aerogel confered the catalyst sufficient active sites and efficient mass transfer channels. For the anode, Mo0.3Fe1Co3–Se MAs exhibits superior oxygen evolution reaction (OER) property, with an overpotential of only 235 mV (10 mA/cm2). Compared with Fe1Co3 MAs or Mo0.3Fe1Co3 MAs, density functional theory (DFT) demonstrated that the better catalytic capacity of Mo0.3Fe1Co3–Se MAs is attributed to the doping of Mo species and selenization lowers the energy barrier for the *OOH to O2 step in the OER process. Excellent OER performance ensures the self-oxygenation in this system, avoiding the addition of air or oxygen in the traditional electro-Fenton process. For the cathode, Mo doping can lead to the lattice contraction and metallic character of CoSe2, which is beneficial to accelerate electron transfer. The adjacent Co active sites effectively adsorb *OOH and inhibit the breakage of the O–O bond. Rotating ring disk electrode (RRDE) test indicated that Mo0.3Fe1Co3–Se MAs has an excellent 2e ORR activity with H2O2 selectivity up to 88%, and the generated H2O2 is activated by the adjacent Fe site through heterogeneous Fenton process to generate ·OH.

References

[1]

L. Lan, X. Kong, H. Sun, C. Li, D. Liu, High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes, J. Environ. Manag. 231 (2019) 439–445.

[2]

T.X.H. Le, M. Bechelany, S. Lacour, N. Oturan, M.A. Oturan, M. Cretin, High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode, Carbon 94 (2015) 1003–1011.

[3]

L. Chu, Z. Sun, G. Fang, L. Cang, X. Wang, D. Zhou, J. Gao, Highly effective removal of BPA with boron-doped graphene shell wrapped FeS2 nanoparticles in electro-Fenton process: performance and mechanism, Separ. Purif. Technol. 267 (2021) 118680.

[4]

Q.Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao, Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance, Environ. Sci. Technol. 49 (2015) 6772–6782.

[5]

J.C. Chee-Sanford, R.I. Mackie, S. Koike, I.G. Krapac, Y.F. Lin, A.C. Yannarell, S. Maxwell, R.I. Aminov, Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure waste, J. Environ. Qual. 38 (2009) 1086–1108.

[6]

P. Dong, X. Chen, M. Guo, Z. Wu, H. Wang, F. Lin, J. Zhang, S. Wang, C. Zhao, H. Sun, Heterogeneous electro-Fenton catalysis with self-supporting CFP@MnO2-Fe3O4/C cathode for shale gas fracturing flowback wastewater, J. Hazard. Mater. 412 (2021) 125208.

[7]

S.O. Ganiyu, T.X. Huong Le, M. Bechelany, G. Esposito, E.D. van Hullebusch, M.A. Oturan, M. Cretin, A hierarchical CoFe-layered double hydroxide modified carbon-felt cathode for heterogeneous electro-Fenton process, J. Mater. Chem. 5 (2017) 3655–3666.

[8]

F. Sopaj, N. Oturan, J. Pinson, F. Podvorica, M.A. Oturan, Effect of the anode materials on the efficiency of the electro-Fenton process for the mineralization of the antibiotic sulfamethazine, Appl. Catal., B 199 (2016) 331–341.

[9]

M. Guo, M. Lu, H. Zhao, F. Lin, F. He, J. Zhang, S. Wang, P. Dong, C. Zhao, Efficient electro-Fenton catalysis by self-supported CFP@CoFe2O4 electrode, J. Hazard. Mater. 423 (2021) 127033.

[10]

J. Li, D. Song, K. Du, Z. Wang, C. Zhao, Performance of graphite felt as a cathode and anode in the electro-Fenton process, RSC Adv. 9 (2019) 38345–38354.

[11]

D. Song, J. Li, Z. Wang, C. Zhao, Performance of graphite felt as anodes in the electro-Fenton oxidation systems: changes in catalysis, conductivity and adsorption properties, Appl. Surf. Sci. 532 (2020) 147450.

[12]

N. Oturan, S.O. Ganiyu, S. Raffy, M.A. Oturan, Sub-stoichiometric titanium oxide as a new anode material for electro-Fenton process: application to electrocatalytic destruction of antibiotic amoxicillin, Appl. Catal., B 217 (2017) 214–223.

[13]

K. Zhao, X. Quan, S. Chen, H. Yu, Y. Zhang, H. Zhao, Enhanced electro-Fenton performance by fluorine-doped porous carbon for removal of organic pollutants in wastewater, Chem. Eng. J. 354 (2018) 606–615.

[14]

Y. Xia, F. Yang, B. Zhang, C. Xu, W. Yang, Y. Li, Fabrication of novel FeS2 NWs/Ti3C2 cathode for Photo-Electro-Fenton degradation of sulfamethazine, Chem. Eng. J. 426 (2021) 130719.

[15]

X. Qin, K. Zhao, X. Quan, P. Cao, S. Chen, H. Yu, Highly efficient metal-free electroFenton degradation of organic contaminants on a bifunctional catalyst, J. Hazard. Mater. 416 (2021) 125859.

[16]

G. Li, Y. Zhang, Highly selective two-electron oxygen reduction to generate hydrogen peroxide using graphite felt modified with N-doped graphene in an electro-Fenton system, New J. Chem. 43 (2019) 12657–12667.

[17]

D. Zhang, K. Yin, Y. Tang, Y. Wei, H. Tang, Y. Du, H. Liu, Y. Chen, C. Liu, Hollow sea-urchin-shaped carbon-anchored single-atom iron as dual-functional electroFenton catalysts for degrading refractory thiamphenicol with fast reaction kinetics in a wide pH range, Chem. Eng. J. 427 (2022) 130996.

[18]

G. Divyapriya, P.V. Nidheesh, Importance of graphene in the electro-Fenton process, ACS Omega 5 (2020) 4725–4732.

[19]

H. Sheng, A.N. Janes, R.D. Ross, D. Kaiman, J. Huang, B. Song, J.R. Schmidt, S. Jin, Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe2 polymorph catalysts, Energy Environ. Sci. 13 (2020) 4189–4203.

[20]

P. Dong, H. Wang, W. Liu, S. Wang, Y. Wang, J. Zhang, F. Lin, Y. Wang, C. Zhao, X. Duan, S. Wang, H. Sun, Quasi-MOF derivative-based electrode for efficient electro-Fenton oxidation, J. Hazard. Mater. 401 (2021) 123423.

[21]

E. Mousset, Z. Wang, J. Hammaker, O. Lefebvre, Physico-chemical properties of pristine graphene and its performance as electrode material for electro-Fenton treatment of wastewater, Electrochim. Acta 214 (2016) 217–230.

[22]

C. Zhang, F. Li, R. Wen, H. Zhang, P. Elumalai, Q. Zheng, H. Chen, Y. Yang, M. Huang, G. Ying, Heterogeneous electro-Fenton using three-dimension NZVI-BC electrodes for degradation of neonicotinoid wastewater, Water Res. 182 (2020) 115975.

[23]

S. Cheng, H. Zheng, C. Shen, B. Jiang, F. Liu, A. Li, Hierarchical iron phosphides composite confined in ultrathin carbon layer as effective heterogeneous electrofenton catalyst with prominent stability and catalytic activity, Adv. Funct. Mater. 31 (2021) 2106311.

[24]

H. Sheng, E.D. Hermes, X. Yang, D. Ying, A.N. Janes, W. Li, J.R. Schmidt, S. Jin, Electrocatalytic production of H2O2 by selective oxygen reduction using earthabundant Cobalt pyrite (CoS2), ACS Catal. 9 (2019) 8433–8442.

[25]

M.R. Haider, W.L. Jiang, J.L. Han, H.M.A. Sharif, Y.C. Ding, H.Y. Cheng, A.J. Wang, In-situ electrode fabrication from polyaniline derived N-doped carbon nanofibers for metal-free electro-Fenton degradation of organic contaminants, Appl. Catal., B 256 (2019) 117774.

[26]

S. Hu, S. Ge, H. Liu, X. Kang, Q. Yu, B. Liu, Low-dimensional electrocatalysts for acidic oxygen evolution: intrinsic activity, high current density operation, and longterm stability, Adv. Funct. Mater. 32 (2022) 2201726.

[27]

Z.P. Wu, X.F. Lu, S.Q. Zang, X.W. Lou, Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction, Adv. Funct. Mater. 30 (2020) 1910274.

[28]

L. Yi, Y. Niu, B. Feng, M. Zhao, W. Hu, Simultaneous phase transformation and doping via a unique photochemical-electrochemical strategy to achieve a highly active Fe-doped Ni oxyhydroxide oxygen evolution catalyst, J. Mater. Chem. 9 (2021) 4213–4220.

[29]

Y. Xue, J. Fang, X. Wang, Z. Xu, Y. Zhang, Q. Lv, M. Liu, W. Zhu, Z. Zhuang, Sulfatefunctionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid, Adv. Funct. Mater. 31 (2021) 2101405.

[30]

X.L. Zhang, P.P. Yang, Y.R. Zheng, Y. Duan, S.J. Hu, T. Ma, F.Y. Gao, Z.Z. Niu, Z.Z. Wu, S. Qin, L.P. Chi, X. Yu, R. Wu, C. Gu, C.M. Wang, X.S. Zheng, X. Zheng, J.F. Zhu, M.R. Gao, An efficient turing-type Ag2Se-CoSe2 multi-interfacial oxygenevolving electrocatalyst, Angew. Chem., Int. Ed. Engl. 60 (2021) 6553–6560.

[31]

T. Li, S. Li, Q. Liu, Y. Tian, Y. Zhang, G. Fu, Y. Tang, Hollow Co3O4/CeO2 heterostructures in situ embedded in N-doped carbon nanofibers enable outstanding oxygen evolution, ACS Sustain. Chem. Eng. 7 (2019) 17950–17957.

[32]

H. Wang, Z. Lu, D. Kong, J. Sun, T.M. Hymel, Y. Cui, Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution, ACS Nano 8 (2014) 4940–4947.

[33]

X. Xu, Y. Ge, M. Wang, Z. Zhang, P. Dong, R. Baines, M. Ye, J. Shen, Cobalt-doped FeSe2-RGO as highly active and stable electrocatalysts for hydrogen evolution reactions, ACS Appl. Mater. Interfaces 8 (2016) 18036–18042.

[34]

Y. Han, H. Li, M. Zhang, Y. Fu, Y. Liu, Y. Yang, J. Xu, Y. Geng, L. Wang, Self-supported Co(CO3)0.5(OH)0.11H2O nanoneedles coated with CoSe2-Ni3Se2 nanoparticles as highly active bifunctional electrocatalyst for overall water splitting, Appl. Surf. Sci. 495 (2019) 143606.

[35]

C. Sun, Q. Dong, J. Yang, Z. Dai, J. Lin, P. Chen, W. Huang, X. Dong, Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting, Nano Res. 9 (2016) 2234–2243.

[36]

H. Wang, Y. Wang, J. Zhang, X. Liu, S. Tao, Electronic structure engineering through Fe-doping CoP enables hydrogen evolution coupled with electro-Fenton, Nano Energy 84 (2021) 105943.

[37]

F. Chen, F. Yang, H. Liu, S. Che, G. Zhang, C. Xu, Y. Li, One-pot preparation of surface vulcanization Co-Fe bimetallic aerogel for efficient sulfadiazine degradation, Chem. Eng. J. (2021) 132904.

[38]

S. Cheng, C. Shen, H. Zheng, F. Liu, A. Li, OCNTs encapsulating Fe-Co PBA as efficient chainmail-like electrocatalyst for enhanced heterogeneous electro-Fenton reaction, Appl. Catal., B 269 (2020) 118785.

[39]

C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y.P. Feng, S.J. Pennycook, J. Wang, Hollow Mo-doped CoP nanoarrays for efficient overall water splitting, Nano Energy 48 (2018) 73–80.

[40]

C. Wang, X. Wu, Y. Qin, Y. Kong, Reduced Mo-doped NiCo2O4 with rich oxygen vacancies as an advanced electrode material in supercapacitors, Chem. 58 (2022) 5120–5123.

[41]

J. Huang, S. Wang, J. Nie, C. Huang, X. Zhang, B. Wang, J. Tang, C. Du, Z. Liu, J. Chen, Active site and intermediate modulation of 3D CoSe2 nanosheet array on Ni foam by Mo doping for high-efficiency overall water splitting in alkaline media, Chem. Eng. J. 417 (2021) 128055.

[42]

J. Lin, Y. Yan, C. Li, X. Si, H. Wang, J. Qi, J. Cao, Z. Zhong, W. Fei, J. Feng, Bifunctional electrocatalysts based on Mo-doped NiCoP nanosheet arrays for overall water splitting, Nano-Micro Lett. 11 (2019) 1–11.

[43]

S. Bae, W. Lee, Inhibition of nZVI reactivity by magnetite during the reductive degradation of 1,1,1-TCA in nZVI/magnetite suspension, Appl. Catal., B 96 (2010) 10–17.

[44]

M. Li, H. Shang, H. Li, Y. Hong, C. Ling, K. Wei, B. Zhou, C. Mao, Z. Ai, L. Zhang, Kirkendall effect boosts phosphorylated nZVI for efficient heavy metal wastewater treatment, Angew. Chem. Int. Ed. 60 (2021) 17115–17122.

[45]

Q. Jiang, Y. Zhang, S. Jiang, Y. Wang, H. Li, W. Han, J. Qu, L. Wang, Y. Hu, Graphene-like carbon sheet-supported nZVI for efficient atrazine oxidation degradation by persulfate activation, Chem. Eng. J. 403 (2021) 126309.

[46]

Q. Wang, Y. Ma, X. Liang, D. Zhang, M. Miao, Novel core/shell CoSe2@PPy nanoflowers for high-performance fiber asymmetric supercapacitors, J. Mater. Chem. 6 (2018) 10361–10369.

[47]

H. Zhu, Z. Zhu, J. Hao, S. Sun, S. Lu, C. Wang, P. Ma, W. Dong, M. Du, High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution, Chem. Eng. J. 431 (2022) 133251.

[48]

T. Zhang, B. Zhang, Q. Peng, J. Zhou, Z. Sun, Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts, J. Mater. Chem. 9 (2021) 433–441.

[49]

Z. Xue, X. Zhang, J. Qin, R. Liu, TMN4 complex embedded graphene as bifunctional electrocatalysts for high efficiency OER/ORR, J. Energy Chem. 55 (2021) 437–443.

[50]

M.A. Kirsanova, V.D. Okatenko, D.A. Aksyonov, R.P. Forslund, J.T. Mefford, K.J. Stevenson, Artem M. Abakumov, Bifunctional OER/ORR catalytic activity in the tetrahedral YBaCo4O7.3 oxide, J. Mater. Chem. 7 (2019) 330–341.

Green Chemical Engineering
Pages 365-375
Cite this article:
Chen F, Yang F, Che S, et al. Bifunctional Mo-doped FeCo–Se aerogels catalysts with excellent OER and ORR activities for electro-Fenton process. Green Chemical Engineering, 2023, 4(3): 365-375. https://doi.org/10.1016/j.gce.2022.11.003

250

Views

9

Downloads

2

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 07 September 2022
Revised: 10 November 2022
Accepted: 24 November 2022
Published: 28 November 2022
© 2022 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return