AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The stability of MOFs in aqueous solutions—research progress and prospects

Yang Ana( )Xinling LvaWeiyi JiangbLingling WangaYuxin ShiaXinxin HangaHuan Panga( )
School of Chemistry and Chemical Engineering (Institute for Innovative Materials and Energy), Yangzhou University, Yangzhou, 225009, China
State Key Lab of Crystal Materials, Shandong University, Jinan, 250100, China
Show Author Information

HIGHLIGHTS

● The research progress on the mechanism of MOFs stability was summarized.

● Factors affecting the water stability of MOFs were analyzed.

● Strategies for improving the water stability of MOFs were summarized.

Graphical Abstract

Abstract

Metal-organic frameworks (MOFs) are favored in the fields of adsorption, separation, catalysis, electrochemistry, and magnetism due to their advantages of large specific surface area, high porosity, controllable pore size adjustment, and dispersion of metal active sites. The application of MOFs involves multiple fields, which requires that MOFs have good water stability, as gaseous and liquid water inevitably exist in industrial processes. In this paper, the research status of the stability of MOFs in aqueous solutions was reviewed in recent years, including the design and synthesis, the influencing factors, and the applications of MOFs in water stability.

References

[1]

H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks, Chem. Rev. 112 (2012) 673–674.

[2]

R.-B. Lin, S. Xiang, B. Li, Y. Cui, G. Qian, W. Zhou, B. Chen, Our journey of developing multifunctional metal-organic frameworks, Coord. Chem. Rev. 384 (2019) 21–36.

[3]

H.C. Zhou, S. Kitagawa, Metal-organic frameworks (MOFs), Chem. Soc. Rev. 43 (2014) 5415–5418.

[4]

C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Large-scale screening of hypothetical metal-organic frameworks, Nat. Chem. 4 (2011) 83–89.

[5]

A.L. Dzubak, L.C. Lin, J. Kim, J.A. Swisher, R. Poloni, S.N. Maximoff, B. Smit, L. Gagliardi, Ab initio carbon capture in open-site metal-organic frameworks, Nat. Chem. 4 (2012) 810–816.

[6]

O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.O. Yazaydin, J.T. Hupp, Metal-organic framework materials with ultrahigh surface areas: is the sky the limit? J. Am. Chem. Soc. 134 (2012) 15016–15021.

[7]

H. Motegi, K. Yano, N. Setoyama, Y. Matsuoka, T. Ohmura, A. Usuki, A facile synthesis of UiO-66 systems and their hydrothermal stability, J. Porous Mater. 24 (2017) 1327–1333.

[8]

S. Zheng, X. Li, B. Yan, Q. Hu, Y. Xu, X. Xiao, H. Xue, H. Pang, Transition-metal (Fe, Co, Ni) based metal-organic frameworks for electrochemical energy storage, Adv. Energy Mater. 7 (2017) 1602733.

[9]

B. Supronowicz, A. Mavrandonakis, T. Heine, Interaction of biologically important organic molecules with the unsaturated copper centers of the HKUST-1 metal-organic framework: an ab-initio study, J. Phys. Chem. C 119 (2015) 3024–3032.

[10]

Y.S. Wei, M. Zhang, R. Zou, Q. Xu, Metal-organic framework-based catalysts with single metal sites, Chem. Rev. 120 (2020) 12089–12174.

[11]

J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai, A. Alsaedi, T. Hayat, X. Wang, Metal-organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions, Chem. Soc. Rev. 47 (2018) 2322–2356.

[12]

X. Zhao, Y. Wang, D.S. Li, X. Bu, P. Feng, Metal-organic frameworks for separation, Adv. Mater. 30 (2018) e1705189.

[13]

M.J. Kalmutzki, C.S. Diercks, O.M. Yaghi, Metal-organic frameworks for water harvesting from air, Adv. Mater. 30 (2018) e1704304.

[14]

D. Liu, J. Wan, G. Pang, Z. Tang, Hollow metal-organic-framework micro/nanostructures and their derivatives: emerging multifunctional materials, Adv. Mater. 31 (2019) e1803291.

[15]

X. Yang, J.-K. Sun, M. Kitta, H. Pang, Q. Xu, Encapsulating highly catalytically active metal nanoclusters inside porous organic cages, Nat. Catal. 1 (2018) 214–220.

[16]

H.F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions, Chem. Soc. Rev. 49 (2020) 1414–1448.

[17]

Z. Liang, C. Qu, D. Xia, R. Zou, Q. Xu, Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion, Angew. Chem. Int. Ed. 57 (2018) 9604–9633.

[18]

L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Metal-organic frameworks as platforms for catalytic applications, Adv. Mater. 30 (2018) e1703663.

[19]

S. Zhou, L. Lu, D. Liu, J. Wang, H. Sakiyama, M. Muddassir, A. Nezamzadeh-Ejhieh, J. Liu, Series of highly stable Cd(Ⅱ)-based MOFs as sensitive and selective sensors for detection of nitrofuran antibiotic, CrystEngComm 23 (2021) 8043–8052.

[20]

J. Chen, F. Cheng, D. Luo, J. Huang, J. Ouyang, A. Nezamzadeh-Ejhieh, M.S. Khan, J. Liu, Y. Peng, Recent advances in Ti-based MOFs in biomedical applications, Dalton Trans. 51 (2022) 14817–14832.

[21]

C. Rao, D. Liao, Y. Pan, Y. Zhong, W. Zhang, Q. Ouyang, A. Nezamzadeh-Ejhieh, J. Liu, Novel formulations of metal-organic frameworks for controlled drug delivery, Expet Opin. Drug Deliv. 19 (2022) 1183–1202.

[22]

W. Zhang, G. Ye, D. Liao, X. Chen, C. Lu, A. Nezamzadeh-Ejhieh, M.S. Khan, J. Liu, Y. Pan, Z. Dai, Recent advances of silver-based coordination polymers on antibacterial applications, Molecules 27 (2022) 7166.

[23]

J. Chen, Z. Zhang, J. Ma, A. Nezamzadeh-Ejhieh, C. Lu, Y. Pan, J. Liu, Z. Bai, Current status and prospects of MOFs in controlled delivery of Pt anticancer drugs, Dalton Trans. 52 (2023) 6226–6238.

[24]

S.L. Zhang, B.Y. Guan, H.B. Wu, X.W.D. Lou, Metal-organic framework-assisted synthesis of compact Fe2O3 nanotubes in Co3O4 host with enhanced lithium storage properties, Nano-Micro Lett. 10 (2018) 44.

[25]

T. Wei, M. Zhang, P. Wu, Y.-J. Tang, S.-L. Li, F.-C. Shen, X.-L. Wang, X.-P. Zhou, Y.-Q. Lan, POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage, Nano Energy 34 (2017) 205–214.

[26]

Y.Z. Zhang, Y. Wang, T. Cheng, W.Y. Lai, H. Pang, W. Huang, Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage, Chem. Soc. Rev. 44 (2015) 5181–5199.

[27]

H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402 (1999) 276–279.

[28]

S.S.-Y. Chui, S.M.-F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n, Science 283 (1999) 1148–1150.

[29]

M. Bosch, S. Yuan, W. Rutledge, H.C. Zhou, Stepwise synthesis of metal-organic frameworks, Acc. Chem. Res. 50 (2017) 857–865.

[30]

S. Yuan, L. Feng, K. Wang, J. Pang, M. Bosch, C. Lollar, Y. Sun, J. Qin, X. Yang, P. Zhang, Q. Wang, L. Zou, Y. Zhang, L. Zhang, Y. Fang, J. Li, H.C. Zhou, Stable metal-organic frameworks: design, synthesis, and applications, Adv. Mater. 30 (2018) e1704303.

[31]

J. Zhu, P.-Z. Li, W. Guo, Y. Zhao, R. Zou, Titanium-based metal-organic frameworks for photocatalytic applications, Coord. Chem. Rev. 359 (2018) 80–101.

[32]

H. Li, W. Shi, K. Zhao, H. Li, Y. Bing, P. Cheng, Enhanced hydrostability in Ni-doped MOF-5, Inorg. Chem. 51 (2012) 9200–9207.

[33]

V.R. Remya, M. Kurian, Synthesis and catalytic applications of metal-organic frameworks: a review on recent literature, Int. Nano Lett. 9 (2018) 17–29.

[34]

Z.W. Huang, K.Q. Hu, L. Mei, C.Z. Wang, Y.M. Chen, W.S. Wu, Z.F. Chai, W.Q. Shi, Potassium ions induced framework interpenetration for enhancing the stability of uranium-based porphyrin MOF with visible-light-driven photocatalytic activity, Inorg. Chem. 60 (2021) 651–659.

[35]

Y. Bai, Y. Dou, L.H. Xie, W. Rutledge, J.R. Li, H.C. Zhou, Zr-based metal-organic frameworks: design, synthesis, structure, and applications, Chem. Soc. Rev. 45 (2016) 2327–2367.

[36]

T. Devic, C. Serre, High valence 3p and transition metal based MOFs, Chem. Soc. Rev. 43 (2014) 6097–6115.

[37]

N.C. Burtch, H. Jasuja, K.S. Walton, Water stability and adsorption in metal-organic frameworks, Chem. Rev. 114 (2014) 10575–10612.

[38]

J. Canivet, A. Fateeva, Y. Guo, B. Coasne, D. Farrusseng, Water adsorption in MOFs: fundamentals and applications, Chem. Soc. Rev. 43 (2014) 5594–5617.

[39]

A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat. Rev. Mater. 1 (2016) 15018.

[40]

C. Wang, X. Liu, N. Keser Demir, J.P. Chen, K. Li, Applications of water stable metal-organic frameworks, Chem. Soc. Rev. 45 (2016) 5107–5134.

[41]

W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle Iii, M. Bosch, H.C. Zhou, Tuning the structure and function of metal-organic frameworks via linker design, Chem. Soc. Rev. 43 (2014) 5618–5656.

[42]

A. Schoedel, S. Rajeh, Why design matters: from decorated metal oxide clusters to functional metal-organic frameworks, Top. Curr. Chem. 378 (2020) 19.

[43]

H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M.O. Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks, Science 329 (2010) 424–428.

[44]

J. He, N. Li, Z.G. Li, M. Zhong, Z.X. Fu, M. Liu, J.C. Yin, Z. Shen, W. Li, J. Zhang, Z. Chang, X.H. Bu, Strategic defect engineering of metal-organic frameworks for optimizing the fabrication of single-atom catalysts, Adv. Funct. Mater. 31 (2021) 2103597.

[45]

S.-Q. Wang, X. Wang, X.-M. Cheng, J. Ma, W.-Y. Sun, Tailoring defect-type and ligand-vacancies in Zr(Ⅳ) frameworks for CO2 photoreduction, J. Mater. Chem. A. 10 (2022) 16396–16402.

[46]

J. Li, J.Y. Huang, Y.X. Meng, L. Li, L.L. Zhang, H.L. Jiang, Zr- and Ti-based metal-organic frameworks: synthesis, structures and catalytic applications, Chem. Commun. 59 (2023) 2541–2559.

[47]

J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130 (2008) 13850–13851.

[48]

H. Furukawa, F. Gandara, Y.B. Zhang, J. Jiang, W.L. Queen, M.R. Hudson, O.M. Yaghi, Water adsorption in porous metal-organic frameworks and related materials, J. Am. Chem. Soc. 136 (2014) 4369–4381.

[49]

R. Thur, N. Van Velthoven, V. Lemmens, M. Bastin, S. Smolders, D. De Vos, I.F.J. Vankelecom, Modulator-mediated functionalization of MOF-808 as a platform tool to create high-performance mixed-matrix membranes, ACS Appl. Mater. Interfaces 11 (2019) 44792–44801.

[50]

D. Feng, Z.Y. Gu, J.R. Li, H.L. Jiang, Z. Wei, H.C. Zhou, Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts, Angew. Chem. Int. Ed. 51 (2012) 10307–10310.

[51]

S.C. Lee, E.Y. Choi, S.B. Lee, S.W. Kim, O.P. Kwon, Unusual transformation from a solvent-stabilized 1D coordination polymer to a metal-organic framework (MOF)-Like cross-linked 3D coordination polymer, Chem. Eur. J. 21 (2015) 15570–15574.

[52]

J.D. Evans, C.J. Sumby, C.J. Doonan, Post-synthetic metalation of metal-organic frameworks, Chem. Soc. Rev. 43 (2014) 5933–5951.

[53]

M. Kalaj, S.M. Cohen, Postsynthetic modification: an enabling technology for the advancement of metal-organic frameworks, ACS Cent. Sci. 6 (2020) 1046–1057.

[54]

H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341 (2013) 1230444.

[55]

C.C. Corrêa, F.M. Scaldini, F.C. Machado, C.B. Pinheiro, Study of the supramolecular interactions of carboxylic acids used as versatile ligands in coordination chemistry, J. Struct. Chem. 57 (2017) 1235–1242.

[56]

X.-T. Liu, S.-S. Chen, S.-M. Li, H.-X. Nie, Y.-Q. Feng, Y.-N. Fan, M.-H. Yu, Z. Chang, X.-H. Bu, Structural tuning of Zn(Ⅱ)-MOFs based on pyrazole functionalized carboxylic acid ligands for organic dye adsorption, CrystEngComm 22 (2020) 5941–5945.

[57]

M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O'Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science 295 (2002) 469–472.

[58]

H. Furukawa, Y.B. Go, N. Ko, Y.K. Park, F.J. Uribe-Romo, J. Kim, M. O'Keeffe, O.M. Yaghi, Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals, Inorg. Chem. 50 (2011) 9147–9152.

[59]

M. Kim, S.M. Cohen, Discovery, development, and functionalization of Zr(Ⅳ)-based metal-organic frameworks, CrystEngComm 14 (2012) 4096–4104.

[60]

M. Kim, J.F. Cahill, K.A. Prather, S.M. Cohen, Postsynthetic modification at orthogonal reactive sites on mixed, bifunctional metal-organic frameworks, Chem. Commun. 47 (2011) 7629–7631.

[61]

M. Kim, S.J. Garibay, S.M. Cohen, Microwave-assisted cyanation of an aryl bromide directly on a metal-organic framework, Inorg. Chem. 50 (2011) 729–731.

[62]

D.J. Lun, G.I. Waterhouse, S.G. Telfer, A general thermolabile protecting group strategy for organocatalytic metal-organic frameworks, J. Am. Chem. Soc. 133 (2011) 5806–5809.

[63]

X. Zhang, R.B. Lin, J. Wang, B. Wang, B. Liang, T. Yildirim, J. Zhang, W. Zhou, B. Chen, Optimization of the pore structures of MOFs for record high hydrogen volumetric working capacity, Adv. Mater. 32 (2020) e1907995.

[64]

S. Yuan, J.S. Qin, C.T. Lollar, H.C. Zhou, Stable metal-organic frameworks with group 4 metals: current status and trends, ACS Cent. Sci. 4 (2018) 440–450.

[65]

B.J. Burnett, P.M. Barron, W. Choe, Recent advances in porphyrinic metal-organic frameworks: materials design, synthetic strategies, and emerging applications, CrystEngComm 14 (2012) 3839–3846.

[66]

J.L.C. Rowsell, O.M. Yaghi, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks, J. Am. Chem. Soc. 128 (2006) 1304–1315.

[67]

R. Haldar, T.K. Maji, Metal-organic frameworks (MOFs) based on mixed linker systems: structural diversities towards functional materials, CrystEngComm 15 (2013) 9276–9295.

[68]

M.L. Foo, R. Matsuda, S. Kitagawa, Functional hybrid porous coordination polymers, Chem. Mater. 26 (2013) 310–322.

[69]

A. Kirchon, L. Feng, H.F. Drake, E.A. Joseph, H.C. Zhou, From fundamentals to applications: a toolbox for robust and multifunctional MOF materials, Chem. Soc. Rev. 47 (2018) 8611–8638.

[70]

Y. Chen, K.B. Idrees, M.R. Mian, F.A. Son, C. Zhang, X. Wang, O.K. Farha, Reticular design of precise linker installation into a zirconium metal-organic framework to reinforce hydrolytic stability, J. Am. Chem. Soc. 145 (2023) 3055–3063.

[71]

S. Yuan, Y.P. Chen, J.S. Qin, W. Lu, L. Zou, Q. Zhang, X. Wang, X. Sun, H.C. Zhou, Linker installation: engineering pore environment with precisely placed functionalities in zirconium MOFs, J. Am. Chem. Soc. 138 (2016) 8912–8919.

[72]

S.M. Cohen, The postsynthetic renaissance in porous solids, J. Am. Chem. Soc. 139 (2017) 2855–2863.

[73]

H. He, Q.-Q. Zhu, C.-P. Li, M. Du, Design of a highly-stable pillar-layer zinc(Ⅱ) porous framework for rapid, reversible, and multi-responsive luminescent sensor in water, Cryst. Growth Des. 19 (2018) 694–703.

[74]

S. Zheng, Y. Sun, H. Xue, P. Braunstein, W. Huang, H. Pang, Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance, Natl. Sci. Rev. 9 (2022) nwab197.

[75]

C. Xu, R. Fang, R. Luque, L. Chen, Y. Li, Functional metal-organic frameworks for catalytic applications, Coord. Chem. Rev. 388 (2019) 268–292.

[76]

Z. Wang, S.M. Cohen, Postsynthetic covalent modification of a neutral metal-organic framework, J. Am. Chem. Soc. 129 (2007) 12368–12369.

[77]

T. Li, M.T. Kozlowski, E.A. Doud, M.N. Blakely, N.L. Rosi, Stepwise ligand exchange for the preparation of a family of mesoporous MOFs, J. Am. Chem. Soc. 135 (2013) 11688–11691.

[78]

P. Deria, J.E. Mondloch, O. Karagiaridi, W. Bury, J.T. Hupp, O.K. Farha, Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement, Chem. Soc. Rev. 43 (2014) 5896–5912.

[79]

Y. Hu, M. Ding, X.Q. Liu, L.B. Sun, H.L. Jiang, Rational synthesis of an exceptionally stable Zn(Ⅱ) metal-organic framework for the highly selective and sensitive detection of picric acid, Chem. Commun. 52 (2016) 5734–5737.

[80]

N. Qadir, S.A.M. Said, H.M. Bahaidarah, Structural stability of metal organic frameworks in aqueous media-controlling factors and methods to improve hydrostability and hydrothermal cyclic stability, Microporous Mesoporous Mater. 201 (2015) 61–90.

[81]

M. Ding, X. Cai, H.L. Jiang, Improving MOF stability: approaches and applications, Chem. Sci. 10 (2019) 10209–10230.

[82]

D. Feng, W.C. Chung, Z. Wei, Z.Y. Gu, H.L. Jiang, Y.P. Chen, D.J. Darensbourg, H.C. Zhou, Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination, J. Am. Chem. Soc. 135 (2013) 17105–17110.

[83]

H.L. Jiang, D. Feng, K. Wang, Z.Y. Gu, Z. Wei, Y.P. Chen, H.C. Zhou, An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence, J. Am. Chem. Soc. 135 (2013) 13934–13938.

[84]

K. Wang, D. Feng, T.F. Liu, J. Su, S. Yuan, Y.P. Chen, M. Bosch, X. Zou, H.C. Zhou, A series of highly stable mesoporous metalloporphyrin Fe-MOFs, J. Am. Chem. Soc. 136 (2014) 13983–13986.

[85]

K. Wang, X.L. Lv, D. Feng, J. Li, S. Chen, J. Sun, L. Song, Y. Xie, J.R. Li, H.C. Zhou, Pyrazolate-based porphyrinic metal-organic framework with extraordinary base-resistance, J. Am. Chem. Soc. 138 (2016) 914–919.

[86]

S. Ali, Z. Zuhra, S. Ali, Q. Han, M. Ahmad, Z. Wang, Ultra-deep removal of Pb by functionality tuned UiO-66 framework: a combined experimental, theoretical and HSAB approach, Chemosphere 284 (2021) 131305.

[87]

T. He, X.J. Kong, J.R. Li, Chemically stable metal-organic frameworks: rational construction and application expansion, Acc. Chem. Res. 54 (2021) 3083–3094.

[88]

F. Yang, G. Xu, Y. Dou, B. Wang, H. Zhang, H. Wu, W. Zhou, J.-R. Li, B. Chen, A flexible metal-organic framework with a high density of sulfonic acid sites for proton conduction, Nat. Energy 2 (2017) 877–883.

[89]

V. Colombo, S. Galli, H.J. Choi, G.D. Han, A. Maspero, G. Palmisano, N. Masciocchi, J.R. Long, High thermal and chemical stability in pyrazolate-bridged metal-organic frameworks with exposed metal sites, Chem. Sci. 2 (2011) 1311–1319.

[90]

X.L. Lv, K. Wang, B. Wang, J. Su, X. Zou, Y. Xie, J.R. Li, H.C. Zhou, A base-resistant metalloporphyrin metal-organic framework for C-H bond halogenation, J. Am. Chem. Soc. 139 (2017) 211–217.

[91]

W.Y. Gao, M. Chrzanowski, S. Ma, Metal-metalloporphyrin frameworks: a resurging class of functional materials, Chem. Soc. Rev. 43 (2014) 5841–5866.

[92]

S. Wang, J. Wang, W. Cheng, X. Yang, Z. Zhang, Y. Xu, H. Liu, Y. Wu, M. Fang, A Zr metal-organic framework based on tetrakis(4-carboxyphenyl) silane and factors affecting the hydrothermal stability of Zr-MOFs, Dalton Trans. 44 (2015) 8049–8061.

[93]

R.G. Pearson, Hard and soft acids bases, J. Am. Chem. Soc. 85 (1963) 3533–3539.

[94]

P. Lu, Y. Wu, H. Kang, H. Wei, H. Liu, M. Fang, What can pKa and NBO charges of the ligands tell us about the water and thermal stability of metal organic frameworks? J. Mater. Chem. A. 2 (2014) 16250–16267.

[95]

J.P. Zhang, Y.B. Zhang, J.B. Lin, X.M. Chen, Metal azolate frameworks: from crystal engineering to functional materials, Chem. Rev. 112 (2012) 1001–1033.

[96]

N. Reimer, B. Bueken, S. Leubner, C. Seidler, M. Wark, D. De Vos, N. Stock, Three series of sulfo-functionalized mixed-linker CAU-10 analogues: sorption properties, proton conductivity, and catalytic activity, Chem. Eur. J. 21 (2015) 12517–12524.

[97]

G.C. Shearer, V. Colombo, S. Chavan, E. Albanese, B. Civalleri, A. Maspero, S. Bordiga, Stability vs. reactivity: understanding the adsorption properties of Ni3(BTP)2 by experimental and computational methods, Dalton Trans. 42 (2013) 6450–6458.

[98]

H. Jasuja, N.C. Burtch, Y.G. Huang, Y. Cai, K.S. Walton, Kinetic water stability of an isostructural family of zinc-based pillared metal-organic frameworks, Langmuir 29 (2013) 633–642.

[99]

M. Mehrali-Afjani, A. Nezamzadeh-Ejhieh, Efficient solid amino acid-clinoptilolite nanoparticles adsorbent for Mn(Ⅱ) removal: a comprehensive study on designing the experiments, thermodynamic and kinetic aspects, Solid State Sci. 101 (2020) 106124.

[100]

A. Nezamzadeh-Ejhieh, E. Afshari, Modification of a PVC-membrane electrode by surfactant modified clinoptilolite zeolite towards potentiometric determination of sulfide, Microporous Mesoporous Mater. 153 (2012) 267–274.

[101]

A. Naghash, A. Nezamzadeh-Ejhieh, Comparison of the efficiency of modified clinoptilolite with HDTMA and HDP surfactants for the removal of phosphate in aqueous solutions, J. Ind. Eng. Chem. 31 (2015) 185–191.

[102]

Y. Zeng, G. Xu, X. Kong, G. Ye, J. Guo, C. Lu, A. Nezamzadeh-Ejhieh, M. Shahnawaz Khan, J. Liu, Y. Peng, Recent advances of the core-shell MOFs in tumour therapy, Int. J. Pharm. 627 (2022) 122228.

[103]

W. Han, X. Ma, J. Wang, F. Leng, C. Xie, H.L. Jiang, Endowing porphyrinic metal-organic frameworks with high stability by a linker desymmetrization strategy, J. Am. Chem. Soc. 145 (2023) 9665–9671.

[104]

S. Xian, J. Peng, Z. Zhang, Q. Xia, H. Wang, Z. Li, Highly enhanced and weakened adsorption properties of two MOFs by water vapor for separation of CO2/CH4 and CO2/N2 binary mixtures, Chem. Eng. J. 270 (2015) 385–392.

[105]

P.G. Boyd, A. Chidambaram, E. Garcia-Diez, C.P. Ireland, T.D. Daff, R. Bounds, A. Gladysiak, P. Schouwink, S.M. Moosavi, M.M. Maroto-Valer, J.A. Reimer, J.A.R. Navarro, T.K. Woo, S. Garcia, K.C. Stylianou, B. Smit, Data-driven design of metal-organic frameworks for wet flue gas CO2 capture, Nature 576 (2019) 253–256.

[106]

L.N. McHugh, M.J. McPherson, L.J. McCormick, S.A. Morris, P.S. Wheatley, S.J. Teat, D. McKay, D.M. Dawson, C.E.F. Sansome, S.E. Ashbrook, C.A. Stone, M.W. Smith, R.E. Morris, Hydrolytic stability in hemilabile metal-organic frameworks, Nat. Chem. 10 (2018) 1096–1102.

[107]

T. Weng, J.R. Schmidt, Structure and thermodynamic stability of zeolitic imidazolate framework surfaces, J. Phys. Chem. C 124 (2019) 1458–1468.

[108]

Z. Yu, X. Cao, S. Wang, H. Cui, C. Li, G. Zhu, Research progress on the water stability of a metal-organic framework in advanced oxidation processes, Water Air Soil Pollut. 18 (2021) 2–19.

[109]

X.Y. Liu, S.J. Pai, S.S. Han, ReaxFF molecular dynamics simulations of water stability of interpenetrated metal-organic frameworks, J. Phys. Chem. C 121 (2017) 7312–7318.

[110]

V. Guillerm, F. Ragon, M. Dan-Hardi, T. Devic, M. Vishnuvarthan, B. Campo, A. Vimont, G. Clet, Q. Yang, G. Maurin, G. Ferey, A. Vittadini, S. Gross, C. Serre, A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks, Angew. Chem. Int. Ed. 51 (2012) 9267–9271.

[111]

L. Bellarosa, S. Calero, N. Lopez, Early stages in the degradation of metal-organic frameworks in liquid water from first-principles molecular dynamics, Phys. Chem. Chem. Phys. 14 (2012) 7240–7245.

[112]

H.J. Choi, M. Dincă, A. Dailly, J.R. Long, Hydrogenstorage in water-stable metal-organic frameworks incorporating 1,3- and 1,4-benzenedipyrazolate, Energy Environ. Sci. 3 (2010) 117–123.

[113]

J.F. Eubank, P.S. Wheatley, G. Lebars, A.C. McKinlay, H. Leclerc, P. Horcajada, M. Daturi, A. Vimont, R.E. Morris, C. Serre, Porous, rigid metal(Ⅲ)-carboxylate metal-organic frameworks for the delivery of nitric oxide, Apl. Mater. 2 (2014) 124112.

[114]

Y.-J. Lee, Y.-J. Chang, D.-J. Lee, J.-P. Hsu, Water stable metal-organic framework as adsorbent from aqueous solution: a mini-review, J. Taiwan Inst. Chem. Eng. 93 (2018) 176–183.

[115]

H. Jasuja, K.S. Walton, Effect of catenation and basicity of pillared ligands on the water stability of MOFs, Dalton Trans. 42 (2013) 15421–15426.

[116]

A.N. Ejhieh, M. Khorsandi, Photodecolorization of Eriochrome Black T using NiS-P zeolite as a heterogeneous catalyst, J. Hazard. Mater. 176 (2010) 629–637.

[117]

J. Liu, A.I. Benin, A.M. Furtado, P. Jakubczak, R.R. Willis, M.D. LeVan, Stability effects on CO2 adsorption for the DOBDC series of metal-organic frameworks, Langmuir 27 (2011) 11451–11456.

[118]

A.C. Kizzie, A.G. Wong-Foy, A.J. Matzger, Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture, Langmuir 27 (2011) 6368–6373.

[119]

A.J. Rieth, S. Yang, E.N. Wang, M. Dinca, Record atmospheric fresh water capture and heat transfer with a material operating at the water uptake reversibility limit, ACS Cent. Sci. 3 (2017) 668–672.

[120]

Q. Yao, A. Bermejo Gómez, J. Su, V. Pascanu, Y. Yun, H. Zheng, H. Chen, L. Liu, H.N. Abdelhamid, B. Martín-Matute, X. Zou, Series of highly stable isoreticular lanthanide metal-organic frameworks with expanding pore size and tunable luminescent properties, Chem. Mater. 27 (2015) 5332–5339.

[121]

X. Zhang, M.C. Wasson, M. Shayan, E.K. Berdichevsky, J. Ricardo-Noordberg, Z. Singh, E.K. Papazyan, A.J. Castro, P. Marino, Z. Ajoyan, Z. Chen, T. Islamoglu, A.J. Howarth, Y. Liu, M.B. Majewski, M.J. Katz, J.E. Mondloch, O.K. Farha, A historical perspective on porphyrin-based metal-organic frameworks and their applications, Coord. Chem. Rev. 429 (2021) 213615.

[122]

X.W. Zhu, X.P. Zhou, D. Li, Exceptionally water stable heterometallic gyroidal MOFs: tuning the porosity and hydrophobicity by doping metal ions, Chem. Commun. 52 (2016) 6513–6516.

[123]

L. Liu, S.G. Telfer, Systematic ligand modulation enhances the moisture stability and gas sorption characteristics of quaternary metal-organic frameworks, J. Am. Chem. Soc. 137 (2015) 3901–3909.

[124]

J.B. DeCoste, G.W. Peterson, H. Jasuja, T.G. Glover, Y.-g. Huang, K.S. Walton, Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit, J. Mater. Chem. A. 1 (2013) 5642–5650.

[125]

T.H. Chen, I. Popov, O. Zenasni, O. Daugulis, O.S. Miljanic, Superhydrophobic perfluorinated metal-organic frameworks, Chem. Commun. 49 (2013) 6846–6848.

[126]

C. Yang, U. Kaipa, Q.Z. Mather, X. Wang, V. Nesterov, A.F. Venero, M.A. Omary, Fluorous metal-organic frameworks with superior adsorption and hydrophobic properties toward oil spill cleanup and hydrocarbon storage, J. Am. Chem. Soc. 133 (2011) 18094–18097.

[127]

E.-P. Ng, S. Mintova, Nanoporous materials with enhanced hydrophilicity and high water sorption capacity, Microporous Mesoporous Mater. 114 (2008) 1–26.

[128]

J.B. Decoste, G.W. Peterson, M.W. Smith, C.A. Stone, C.R. Willis, Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition, J. Am. Chem. Soc. 134 (2012) 1486–1489.

[129]

L. Bellarosa, J.J. Gutierrez-Sevillano, S. Calero, N. Lopez, How ligands improve the hydrothermal stability and affect the adsorption in the IRMOF family, Phys. Chem. Chem. Phys. 15 (2013) 17696–17704.

[130]

J.M. Taylor, R. Vaidhyanathan, S.S. Iremonger, G.K. Shimizu, Enhancing water stability of metal-organic frameworks via phosphonate monoester linkers, J. Am. Chem. Soc. 134 (2012) 14338–14340.

[131]

J.J. Low, A.I. Benin, P. Jakubczak, J.F. Abrahamian, S.A. Faheem, R.R. Willis, Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration, J. Am. Chem. Soc. 131 (2009) 15834–15842.

[132]

J. Sculley, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal-organic frameworks—updated, Energy Environ. Sci. 4 (2011) 2721–2735.

[133]

L. Robison, X. Gong, A.M. Evans, F.A. Son, X. Wang, L.R. Redfern, M.C. Wasson, Z.H. Syed, Z. Chen, K.B. Idrees, T. Islamoglu, M. Delferro, W.R. Dichtel, F.X. Coudert, N.C. Gianneschi, O.K. Farha, Transient catenation in a zirconium-based metal-organic framework and its effect on mechanical stability and sorption properties, J. Am. Chem. Soc. 143 (2021) 1503–1512.

[134]

Y. Zhu, J. Cai, L. Xu, G. Li, Y. Liu, Two robust isoreticular metal-organic frameworks with different interpenetration degrees exhibiting disparate breathing behaviors, Inorg. Chem. 61 (2022) 10957–10964.

[135]

L. Wang, X. Li, B. Yang, K. Xiao, H. Duan, H. Zhao, The chemical stability of metal-organic frameworks in water treatments: fundamentals, effect of water matrix and judging methods, Chem. Eng. J. 450 (2022) 138215.

[136]

Z. Li, L. Wang, L. Qin, C. Lai, Z. Wang, M. Zhou, L. Xiao, S. Liu, M. Zhang, Recent advances in the application of water-stable metal-organic frameworks: adsorption and photocatalytic reduction of heavy metal in water, Chemosphere 285 (2021) 131432.

[137]

Y. Jiao, C.R. Morelock, N.C. Burtch, W.P. Mounfield, J.T. Hungerford, K.S. Walton, Tuning the kinetic water stability and adsorption interactions of Mg-MOF-74 by partial substitution with Co or Ni, Ind. Eng. Chem. Res. 54 (2015) 12408–12414.

[138]

S.J. Yang, C.R. Park, Preparation of highly moisture-resistant black-colored metal organic frameworks, Adv. Mater. 24 (2012) 4010–4013.

[139]

J. Wang, I. Imaz, D. Maspoch, Metal-organic frameworks: why make them small? Small Struct. 3 (2022) 2100126.

[140]

L. Bellarosa, J.M. Castillo, T. Vlugt, S. Calero, N. Lopez, On the mechanism behind the instability of isoreticular metal-organic frameworks (IRMOFs) in humid environments, Chem. Eur. J. 18 (2012) 12260–12266.

[141]

M. De Toni, R. Jonchiere, P. Pullumbi, F.X. Coudert, A.H. Fuchs, How can a hydrophobic MOF be water-unstable? Insight into the hydration mechanism of IRMOFs, ChemPhysChem 13 (2012) 3497–3503.

[142]

K. Wang, H. Huang, X. Zhou, Q. Wang, G. Li, H. Shen, Y. She, C. Zhong, Highly chemically stable MOFs with trifluoromethyl groups: effect of position of trifluoromethyl groups on chemical stability, Inorg. Chem. 58 (2019) 5725–5732.

[143]

J. Yang, A. Grzech, F.M. Mulder, T.J. Dingemans, Methyl modified MOF-5: a water stable hydrogen storage material, Chem. Commun. 47 (2011) 5244–5246.

[144]

N. Novendra, J.M. Marrett, A.D. Katsenis, H.M. Titi, M. Arhangelskis, T. Friscic, A. Navrotsky, Linker substituents control the thermodynamic stability in metal-organic frameworks, J. Am. Chem. Soc. 142 (2020) 21720–21729.

[145]

T.A. Makal, X. Wang, H.-C. Zhou, Tuning the moisture and thermal stability of metal-organic frameworks through incorporation of pendant hydrophobic groups, Cryst. Growth Des. 13 (2013) 4760–4768.

[146]

T. Wu, L. Shen, M. Luebbers, C. Hu, Q. Chen, Z. Ni, R.I. Masel, Enhancing the stability of metal-organic frameworks in humid air by incorporating water repellent functional groups, Chem. Commun. 46 (2010) 6120–6122.

[147]

D. Ma, Y. Li, Z. Li, Tuning the moisture stability of metal-organic frameworks by incorporating hydrophobic functional groups at different positions of ligands, Chem. Commun. 47 (2011) 7377–7379.

[148]

Z.-R. Jiang, J. Ge, Y.-X. Zhou, Z.U. Wang, D. Chen, S.-H. Yu, H.-L. Jiang, Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water, NPG Asia Mater. 8 (2016) e253.

[149]

Y. Yoo, V. Varela-Guerrero, H.K. Jeong, Isoreticular metal-organic frameworks and their membranes with enhanced crack resistance and moisture stability by surfactant-assisted drying, Langmuir 27 (2011) 2652–2657.

[150]

M. Ding, H.-L. Jiang, Improving water stability of metal-organic frameworks by a general surface hydrophobic polymerization, CCS Chem 3 (2021) 2740–2748.

[151]

W. Zhang, Y. Hu, J. Ge, H.L. Jiang, S.H. Yu, A facile and general coating approach to moisture/water-resistant metal-organic frameworks with intact porosity, J. Am. Chem. Soc. 136 (2014) 16978–16981.

[152]

F. Fathieh, M.J. Kalmutzki, E.A. Kapustin, P.J. Waller, J. Yang, O.M. Yaghi, Practical water production from desert air, Sci. Adv. 4 (2018) eaat3198.

[153]

N. Hanikel, M.S. Prevot, F. Fathieh, E.A. Kapustin, H. Lyu, H. Wang, N.J. Diercks, T.G. Glover, O.M. Yaghi, Rapid cycling and exceptional yield in a metal-organic framework water harvester, ACS Cent. Sci. 5 (2019) 1699–1706.

[154]

R. Mesgarian, A. Heydarinasab, A. Rashidi, Y. Zamani, Adsorption and growth of water clusters on UiO-66 based nanoadsorbents: a systematic and comparative study on dehydration of natural gas, Sep. Purif. Technol. 239 (2020) 116512.

[155]

Y. Peng, H. Huang, Y. Zhang, C. Kang, S. Chen, L. Song, D. Liu, C. Zhong, A versatile MOF-based trap for heavy metal ion capture and dispersion, Nat. Commun. 9 (2018) 187.

[156]

K.C. Park, S.S. Chhatre, S. Srinivasan, R.E. Cohen, G.H. McKinley, Optimal design of permeable fiber network structures for fog harvesting, Langmuir 29 (2013) 13269–13277.

[157]

J. Zhang, P. Li, X. Zhang, X. Ma, B. Wang, Water adsorption properties and applications of stable metal-organic frameworks, Acta Chimica Sinica 78 (2020) 597–612.

[158]

H. Shirzadi, A. Nezamzadeh-Ejhieh, An efficient modified zeolite for simultaneous removal of Pb(Ⅱ) and Hg(Ⅱ) from aqueous solution, J. Mol. Liq. 230 (2017) 221–229.

[159]

T. Tamiji, A. Nezamzadeh-Ejhieh, A comprehensive study on the kinetic aspects and experimental design for the voltammetric response of a Sn(Ⅳ)-clinoptilolite carbon paste electrode towards Hg(Ⅱ), J. Electroanal. Chem. 829 (2018) 95–105.

[160]

A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Decolorization of a binary azo dyes mixture using CuO incorporated nanozeolite-X as a heterogeneous catalyst and solar irradiation, Chem. Eng. J. 228 (2013) 631–641.

[161]

S. Ghattavi, A. Nezamzadeh-Ejhieh, A brief study on the boosted photocatalytic activity of AgI/WO3/ZnO in the degradation of Methylene Blue under visible light irradiation, Desalination Water Treat. 166 (2019) 92–104.

[162]

S.A. Mirsalari, A. Nezamzadeh-Ejhieh, A.R. Massah, A designed experiment for CdS-AgBr photocatalyst toward methylene blue, Environ. Sci. Pollut. Res. 29 (2022) 33013–33032.

[163]

S. Vahabirad, A. Nezamzadeh-Ejhieh, Co-precipitation synthesis of BiOI/(BiO)2CO3: brief characterization and the kinetic study in the photodegradation and mineralization of sulfasalazine, J. Solid State Chem. 310 (2022) 123018.

[164]

N. Arabpour, A. Nezamzadeh-Ejhieh, Photodegradation of cotrimaxazole by clinoptilolite-supported nickel oxide, Process Saf. Environ. Protect. 102 (2016) 431–440.

[165]

L. Li, J. Zou, Y. Han, Z. Liao, P. Lu, A. Nezamzadeh-Ejhieh, J. Liu, Y. Peng, Recent advances in Al(Ⅲ)/In(Ⅲ)-based MOFs for the detection of pollutants, New J. Chem. 46 (2022) 19577–19592.

[166]

D.P. Hader, A.T. Banaszak, V.E. Villafane, M.A. Narvarte, R.A. Gonzalez, E.W. Helbling, Anthropogenic pollution of aquatic ecosystems: emerging problems with global implications, Sci. Total Environ. 713 (2020) 136586.

[167]

L. Joseph, B.M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, Removal of heavy metals from water sources in the developing world using low-cost materials: a review, Chemosphere 229 (2019) 142–159.

[168]

Z. Fu, S. Xi, The effects of heavy metals on human metabolism, Toxicol. Mech. Methods 30 (2020) 167–176.

[169]

C. Zhang, H. Shi, Y. Yan, L. Sun, Y. Ye, Y. Lu, Z. Liang, J. Li, A zwitterionic ligand-based water-stable metal-organic framework showing photochromic and Cr(Ⅵ) removal properties, Dalton Trans. 49 (2020) 10613–10620.

[170]

A. Nezamzadeh-Ejhieh, M. Shahanshahi, Modification of clinoptilolite nano-particles with hexadecylpyridynium bromide surfactant as an active component of Cr(Ⅵ) selective electrode, J. Ind. Eng. Chem. 19 (2013) 2026–2033.

[171]

M. Nosuhi, A. Nezamzadeh-Ejhieh, High catalytic activity of Fe(Ⅱ)-clinoptilolite nanoparticales for indirect voltammetric determination of dichromate: experimental design by response surface methodology (RSM), Electrochim. Acta 223 (2017) 47–62.

[172]

H. Derikvandi, A. Nezamzadeh-Ejhieh, Increased photocatalytic activity of NiO and ZnO in photodegradation of a model drug aqueous solution: effect of coupling, supporting, particles size and calcination temperature, J. Hazard. Mater. 321 (2017) 629–638.

[173]

S. Ghattavi, A. Nezamzadeh-Ejhieh, A visible light driven AgBr/g-C3N4 photocatalyst composite in methyl orange photodegradation: focus on photoluminescence, mole ratio, synthesis method of g-C3N4 and scavengers, Composites Part B 183 (2020) 107712.

[174]

M. Nasiri-Ardali, A. Nezamzadeh-Ejhieh, A comprehensive study on the kinetics and thermodynamic aspects of batch and column removal of Pb(Ⅱ) by the clinoptilolite-glycine adsorbent, Mater. Chem. Phys. 240 (2020) 122142.

[175]

M.a.S. Shafiof, A. Nezamzadeh-Ejhieh, A comprehensive study on the removal of Cd(Ⅱ) from aqueous solution on a novel pentetic acid-clinoptilolite nanoparticles adsorbent: experimental design, kinetic and thermodynamic aspects, Solid State Sci. 99 (2020) 106071.

[176]

O.M. Yaghi, M. O'Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials, Nature 423 (2003) 705–714.

[177]

S. Kitagawa, R. Kitaura, S. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed. 43 (2004) 2334–2375.

[178]

J. Li, H. Huang, P. Liu, X. Song, D. Mei, Y. Tang, X. Wang, C. Zhong, Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution, J. Catal. 375 (2019) 351–360.

[179]

F. Eshraghi, A. Nezamzadeh-Ejhieh, EDTA-functionalized clinoptilolite nanoparticles as an effective adsorbent for Pb(Ⅱ) removal, Environ. Sci. Pollut. Res. 25 (2018) 14043–14056.

[180]

Y. Wu, Y. Sun, J. Xiao, X. Wang, Z. Li, Glycine-modified HKUST-1 with simultaneously enhanced moisture stability and improved adsorption for light hydrocarbons separation, ACS Sustainable Chem. Eng. 7 (2018) 1557–1563.

[181]

S. Xu, X. Guo, Z. Qiao, C. Zhong, Facile in situ polymer functionalization approach for constructing water-resistant metal-organic frameworks, Ind. Eng. Chem. Res. 62 (2023) 1899–1905.

[182]

W.P. Mounfield, C. Han, S.H. Pang, U. Tumuluri, Y. Jiao, S. Bhattacharyya, M.R. Dutzer, S. Nair, Z. Wu, R.P. Lively, D.S. Sholl, K.S. Walton, Synergistic effects of water and SO2 on degradation of MIL-125 in the presence of acid gases, J. Phys. Chem. C 120 (2016) 27230–27240.

[183]

Y. Fu, H. Yang, R. Du, G. Tu, C. Xu, F. Zhang, M. Fan, W. Zhu, Enhanced photocatalytic CO2 reduction over Co-doped NH2-MIL-125(Ti) under visible light, RSC Adv. 7 (2017) 42819–42825.

[184]

B. Panella, M. Hirscher, H. Pütter, U. Müller, Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared, Adv. Funct. Mater. 16 (2006) 520–524.

[185]

C.K. Brozek, M. Dinca, Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5, J. Am. Chem. Soc. 135 (2013) 12886–12891.

Green Chemical Engineering
Pages 187-204
Cite this article:
An Y, Lv X, Jiang W, et al. The stability of MOFs in aqueous solutions—research progress and prospects. Green Chemical Engineering, 2024, 5(2): 187-204. https://doi.org/10.1016/j.gce.2023.07.004

421

Views

30

Downloads

42

Crossref

43

Web of Science

45

Scopus

0

CSCD

Altmetrics

Received: 18 May 2023
Revised: 23 July 2023
Accepted: 30 July 2023
Published: 01 August 2023
© 2023 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return