PDF (13.9 MB)
Collect
Submit Manuscript
Show Outline
Outline
HIGHLIGHTS
Graphical Abstract
Abstract
Keywords
References
Show full outline
Hide outline
Review Article | Open Access

Progress on gas-solid phase photoreactor and its application in CO2 reduction

Litian LiuYunlong LiJialun HeQing WangJuan DengXiao Chen()Chao Yu()
School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
Show Author Information

HIGHLIGHTS

· This review presents a unique perspective on the various types of gas-solid phase photoreactors.

· The criteria of performance evaluation and the development process of gas-solid phase photoreactors are explored in detail.

· This review provides a summary of perspectives and prospects for enhancing the performance of the reactor in CO2 reduction.

Graphical Abstract

View original image Download original image

Abstract

The burgeoning field of photocatalytic reduction of CO2 has emerged as a remarkable promising solution to address some of the most pressing global energy and environmental issues which we face today. Researchers around the global have been striving to augment the efficiency of CO2 photocatalytic reduction, employing strategies that range from modifying the fundamental properties of photocatalysts to suppress the electron-hole recombination, optimizing reaction conditions to achieve the highest yield, and conceptualizing and constructing photoreactors to improve the adsorption process. Among these factors, the photoreactor plays a critical role in enhancing the overall photocatalytic efficiency. Understanding the various types of photoreactors and their operational dynamic can significantly influence the experimental design, thus guiding the data collecting and analysis. Compared to the solid-liquid phase, gas-solid phase photocatalytic reduction of CO2 is gaining recognition for its potential advantages, such as rapid molecular diffusion rates, adjustable CO2 concentrations, and uniform and sufficient light exposure. Nonetheless, the currently reported gas-solid phase photoreactors are still in their infancy. In this review, we dissect the underlying mechanism of photocatalytic CO2 reduction and the performance evaluation criteria of photoreactors, and review the development process of gas-solid phase photoreactors. Furthermore, we explore the evolution of gas-solid phase photoreactors, elucidating their growth trajectory and future possibilities. We present a comprehensive classification of gas-solid phase photoreactors, offering a new insight into their design and functionality, summarizing their strengths and inevitable limitations. Finally, we provide a forward-looking perspective on the future developmental prospects of carbon neutrality.

References

[1]

F. Zhang, F. Liu, X. Ma, G. Guo, B. Liu, T. Cheng, T. Liang, W. Tao, X. Chen, X. Wang, Greenhouse gas emissions from vegetables production in China, J. Clean. Prod. 317 (2021) 128449.

[2]

K.S. Van Houtan, K.R. Tanaka, T.O. Gagné, S.L. Becker, The geographic disparity of historical greenhouse emissions and projected climate change, Sci. Adv. 7 (2021) eabe4342.

[3]

S. Hu, S.-P. Xie, S.M. Kang, Global warming pattern formation: the role of ocean heat uptake, J. Clim. 35 (2022) 1885-1899.

[4]

B. Guo, C. Wei, Y. Yu, Y. Liu, J. Li, C. Meng, Y. Cai, The dominant influencing factors of desertification changes in the source region of Yellow River: climate change or human activity? Sci. Total Environ. 813 (2022) 152512.

[5]

M. Halmann, Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells, Nature 275 (1978) 115-116.

[6]

S.-L. Hou, J. Dong, X.-Y. Zhao, X.-S. Li, F.-Y. Ren, J. Zhao, B. Zhao, Thermo-catalysis of CO2 into valuable products activated by noble-metal-free metal-organic frameworks, Angew. Chem. Int. Ed. (2023) e202305213.

[7]

S. Fu, I. Angelidaki, Y. Zhang, In situ biogas upgrading by CO2-to-CH4 bioconversion, Trends Biotechnol. 39 (2021) 336-347.

[8]

S. Wang, A.A. Tountas, W. Pan, J. Zhao, L. He, W. Sun, D. Yang, G.A. Ozin, CO2 footprint of thermal versus photothermal CO2 catalysis, Small 17 (2021) 2007025.

[9]

D.L.T. Nguyen, Y. Kim, Y.J. Hwang, D.H. Won, Progress in development of electrocatalyst for CO2 conversion to selective CO production, Carbon Energy 2 (2020) 72-98.

[10]

Z. Li, C. Mao, Q. Pei, P.N. Duchesne, T. He, M. Xia, J. Wang, L. Wang, R. Song, A.A. Jelle, D.M. Meira, Q. Ge, K.K. Ghuman, L. He, X. Zhang, G.A. Ozin, Engineered disorder in CO2 photocatalysis, Nat. Commun. 13 (2022) 7205.

[11]

N. Kong, H. Du, Z. Li, T. Lu, S. Xia, Z. Tang, S. Song, Nano heterojunction of double MOFs for improved CO2 photocatalytic reduction performance, Colloids Surf., A 663 (2023) 131005.

[12]

W. Wang, W. Zhang, Y. Cai, Q. Wang, J. Deng, J. Chen, Z. Jiang, Y. Zhang, C. Yu, Introducing B-N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets, Nano Res. 16 (2023) 2177-2184.

[13]

D.C. Grills, M.Z. Ertem, M. McKinnon, K.T. Ngo, J. Rochford, Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts, Coord. Chem. Rev. 374 (2018) 173-217.

[14]

J. Deng, Y. Cai, J. Chen, Q. Wang, J. Lu, X. Chen, W. Zhang, K. Wu, W. Wang, L. Wei, F. Yang, A. Yuan, H. Pang, C. Yu, Towards automated microfluidic-based platforms: optimizing hydrogenation efficiency of nitrobenzene through π–π Interactions in Pd nanoparticles on covalent organic frameworks, Angew. Chem. Int. Ed. 62 (2023) e202302297.

[15]

C.d.A. Gusmão, L.A. Diniz, B. Ramos, A.G. Câmara, J.G.A. Pacheco, A.C.S.C. Teixeira, Optimization of TiO2/SiO2 photocatalysts in a LED-irradiated gas-solid photoreactor for air treatment, Chem. Eng. Res. Des. 185 (2022) 223-238.

[16]

Y. Li, Y. Ma, K. Li, S. Chen, D. Yue, Photocatalytic reactor as a bridge to link the commercialization of photocatalyst in water and air purification, Catalysts 12 (2022) 724.

[17]

L. Yang, J. Cui, L. Zhang, X. Xu, X. Chen, D. Sun, A moisture-driven actuator based on polydopamine-modified MXene/Bacterial cellulose nanofiber composite film, Adv. Funct. Mater. 31 (2021) 2101378.

[18]

Z.U. Rehman, M. Bilal, J. Hou, F.K. Butt, J. Ahmad, S. Ali, A. Hussain, Photocatalytic CO2 reduction using TiO2-based photocatalysts and TiO2 Z-scheme heterojunction composites: a review, Molecules 27 (2022) 2069.

[19]

X. Liu, S. Inagaki, J. Gong, Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation, Angew. Chem. Int. Ed. 55 (2016) 14924-14950.

[20]

J. Barrio, D. Mateo, J. Albero, H. García, M. Shalom, A heterogeneous carbon nitride-nickel photocatalyst for efficient low-temperature CO2 methanation, Adv. Energy Mater. 9 (2019) 1902738.

[21]

H.-N. Wang, Y.-H. Zou, H.-X. Sun, Y. Chen, S.-L. Li, Y.-Q. Lan, Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid–gas mode, Coord. Chem. Rev. 438 (2021) 213906.

[22]

Y. Ma, S. Wang, X. Duan, Recent advances in direct gas–solid-phase photocatalytic conversion of CO2 for porous photocatalysts under different CO2 atmospheres, Chem. Eng. J. 455 (2023) 140654.

[23]

K.P. Sundar, S. Kanmani, Progression of photocatalytic reactors and it's comparison: a review, Chem. Eng. Res. Des. 154 (2020) 135-150.

[24]

T. Claes, S. Fransen, J. Degrève, T. Van Gerven, M. Enis Leblebici, Kinetic optimization of multilayered photocatalytic reactors, Chem. Eng. J. 421 (2021) 127794.

[25]

L. Liu, M. Li, F. Chen, H. Huang, Recent advances on single-atom catalysts for CO2 reduction, Small Struct. 4 (2023) 2200188.

[26]

S. Orozco, M. Rivero, R. Suárez-Parra, M. Téllez, C.A. Arancibia-Bulnes, Theoretical-experimental methodology for designing hybrid photocatalytic reactors, Top. Catal. 65 (2022) 1000-1014.

[27]

J. Yang, Z. Wen, X. Shen, J. Dai, Y. Li, Y. Li, A comparative study on the photocatalytic behavior of graphene-TiO2 nanostructures: effect of TiO2 dimensionality on interfacial charge transfer, Chem. Eng. J. 334 (2018) 907-921.

[28]

X. Ren, M. Gao, Y. Zhang, Z. Zhang, X. Cao, B. Wang, X. Wang, Photocatalytic reduction of CO2 on BiOX: effect of halogen element type and surface oxygen vacancy mediated mechanism, Appl. Catal., B 274 (2020) 119063.

[29]

J. Park, H. Liu, G. Piao, U. Kang, H.W. Jeong, C. Janáky, H. Park, Synergistic conversion of CO2 into C1 and C2 gases using hybrid in-doped TiO2 and g-C3N4 photocatalysts, Chem. Eng. J. 437 (2022) 135388.

[30]

A. Álvarez, M. Borges, J.J. Corral-Pérez, J.G. Olcina, L. Hu, D. Cornu, R. Huang, D. Stoian, A. Urakawa, CO2 activation over catalytic surfaces, ChemPhysChem 18 (2017) 3135-3141.

[31]

S. Wang, X. Han, Y. Zhang, N. Tian, T. Ma, H. Huang, Inside-and-out semiconductor engineering for CO2 photoreduction: from recent advances to new trends, Small Struct. 2 (2021) 2000061.

[32]

Y.-Y. Li, Z.-H. Wei, J.-B. Fan, Z.-J. Li, H.-C. Yao, Photocatalytic CO2 reduction activity of Z-scheme CdS/CdWO4 catalysts constructed by surface charge directed selective deposition of CdS, Appl. Surf. Sci. 483 (2019) 442-452.

[33]

F. Chen, Z. Ma, L. Ye, T. Ma, T. Zhang, Y. Zhang, H. Huang, Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals, Adv. Mater. 32 (2020) 1908350.

[34]

S.-Y. Chen, J.-P. Yu, Z.-F. Chai, W.-Q. Shi, L.-Y. Yuan, Is the sacrificial agent really just a sacrificial agent? A case study on the photocatalytic reduction of U(VI) by alcohols, Chem. Eng. J. 460 (2023) 141742.

[35]

E. Karamian, S. Sharifnia, On the general mechanism of photocatalytic reduction of CO2, J. CO2 Util. 16 (2016) 194-203.

[36]

J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Product selectivity of photocatalytic CO2 reduction reactions, Mater. Today 32 (2020) 222-243.

[37]

S. Shoji, X. Peng, A. Yamaguchi, R. Watanabe, C. Fukuhara, Y. Cho, T. Yamamoto, S. Matsumura, M.-W. Yu, S. Ishii, T. Fujita, H. Abe, M. Miyauchi, Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems, Nat. Catal. 3 (2020) 148-153.

[38]

G. Chen, R. Gao, Y. Zhao, Z. Li, G.I.N. Waterhouse, R. Shi, J. Zhao, M. Zhang, L. Shang, G. Sheng, X. Zhang, X. Wen, L.-Z. Wu, C.-H. Tung, T. Zhang, Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons, Adv. Mater. 30 (2018) 1704663.

[39]

P. Chen, X.a. Dong, M. Huang, K. Li, L. Xiao, J. Sheng, S. Chen, Y. Zhou, F. Dong, Rapid self-decomposition of g-C3N4 during gas–solid photocatalytic CO2 reduction and its effects on performance assessment, ACS Catal. 12 (2022) 4560-4570.

[40]

X. Lin, Z. Xie, B. Su, M. Zheng, W. Dai, Y. Hou, Z. Ding, W. Lin, Y. Fang, S. Wang, Well-defined Co9S8 cages enable the separation of photoexcited charges to promote visible-light CO2 reduction, Nanoscale 13 (2021) 18070-18076.

[41]

A. Raza, H. Shen, A.A. Haidry, L. Sun, R. Liu, S. Cui, Studies of Z-scheme WO3-TiO2/Cu2ZnSnS4 ternary nanocomposite with enhanced CO2 photoreduction under visible light irradiation, J. CO2 Util. 37 (2020) 260-271.

[42]

X. Wang, Z. Zhang, Z. Huang, P. Dong, X. Nie, Z. Jin, X. Zhang, Synergistic effect of N-Ho on photocatalytic CO2 reduction for N/Ho co-doped TiO2 nanorods, Mater. Res. Bull. 118 (2019) 110502.

[43]

L. Xue, C. Zhang, T. Shi, S. Liu, H. Zhang, M. Sun, F. Liu, Y. Liu, Y. Wang, X. Gu, S. Zeng, Unraveling the improved CO2 adsorption and COOH∗ formation over Cu-decorated ZnO nanosheets for CO2 reduction toward CO, Chem. Eng. J. 452 (2023) 139701.

[44]

J.Z.Y. Tan, S. Gavrielides, H.R. Xu, W.A. Thompson, M.M. Maroto-Valer, Alkali modified P25 with enhanced CO2 adsorption for CO2 photoreduction, RSC Adv. 10 (2020) 27989-27994.

[45]

S. Cimino, L. Lisi, Catalyst deactivation, poisoning and regeneration, Catalysts 9 (2019) 668.

[46]

M. Khalil, J. Gunlazuardi, T.A. Ivandini, A. Umar, Photocatalytic conversion of CO2 using earth-abundant catalysts: a review on mechanism and catalytic performance, Renew. Sustain. Energy Rev. 113 (2019) 109246.

[47]

W.A. Thompson, E. Sanchez Fernandez, M.M. Maroto-Valer, Review and analysis of CO2 photoreduction kinetics, ACS Sustain. Chem. Eng. 8 (2020) 4677-4692.

[48]

X. Zhuang, X. Xu, L. Li, D. Deng, Numerical investigation of a multichannel reactor for syngas production by methanol steam reforming at various operating conditions, Int. J. Hydrogen Energy 45 (2020) 14790-14805.

[49]

E.A. Elkhalifa, H.B. Friedrich, Oxidative dehydrogenation of n-octane over a vanadium–magnesium oxide catalyst: influence of the gas hourly space velocity, Arab. J. Chem. 12 (2019) 2464-2469.

[50]

S. Bezergianni, A. Dimitriadis, A. Kalogianni, K.G. Knudsen, Toward hydrotreating of waste cooking oil for biodiesel production. effect of pressure, H2/Oil ratio, and liquid hourly space velocity, Ind. Eng. Chem. Res. 50 (2011) 3874-3879.

[51]

X. Tian, Y. Li, S. Wang, H. Zhong, Y. Zou, B. Lin, Y. Zhou, Improved space time yield of chlorine over CuO/Al2O3 co-promoted by MnOx-CoOx in HCl oxidation reaction, Catal. Lett. 152 (2022) 2239-2246.

[52]

H. Kumazawa, H. Kawasaki, M. Inoue, Liquid-phase photocatalytic degradation over TiO2 particles suspending in gas-liquid dispersion, Chem. Eng. Commun. 189 (2002) 298-309.

[53]

L.A. Al-Hajji, A.A. Ismail, M. Faycal Atitar, I. Abdelfattah, A.M. El-Toni, Construction of mesoporous g-C3N4/TiO2 nanocrystals with enhanced photonic efficiency, Ceram. Int. 45 (2019) 1265-1272.

[54]

L. Zhang, W.A. Anderson, Kinetic analysis of the photochemical decomposition of gas-phase chlorobenzene in a UV reactor: quantum yield and photonic efficiency, Chem. Eng. J. 218 (2013) 247-252.

[55]

R. Binjhade, R. Mondal, S. Mondal, Continuous photocatalytic reactor: critical review on the design and performance, J. Environ. Chem. Eng. 10 (2022) 107746.

[56]

A. Visan, J.R. van Ommen, M.T. Kreutzer, R.G.H. Lammertink, Photocatalytic reactor design: guidelines for kinetic investigation, Ind. Eng. Chem. Res. 58 (2019) 5349-5357.

[57]

Y. Abdel-Maksoud, E. Imam, A. Ramadan, TiO2 solar photocatalytic reactor systems: selection of reactor design for scale-up and commercialization-analytical review, Catalysts 6 (2016) 138.

[58]

M. Jafarikojour, B. Dabir, M. Sohrabi, S.J. Royaee, Evaluation and optimization of a new design photocatalytic reactor using impinging jet stream on a TiO2 coated disc, Chem. Eng. Technol. 121 (2017) 215-223.

[59]

Z.B. Fang, T.T. Liu, J. Liu, S. Jin, X.P. Wu, X.Q. Gong, K. Wang, Q. Yin, T.F. Liu, R. Cao, H.C. Zhou, Boosting interfacial charge-transfer kinetics for efficient overall CO2 photoreduction via rational design of coordination spheres on metal-organic frameworks, J. Am. Chem. Soc. 142 (2020) 12515-12523.

[60]

Z.-C. Kong, J.-F. Liao, Y.-J. Dong, Y.-F. Xu, H.-Y. Chen, D.-B. Kuang, C.-Y. Su, Core@Shell CsPbBr3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction, ACS Energy Lett. 3 (2018) 2656-2662.

[61]

X. Lu, J.Z.Y. Tan, M.M. Maroto-Valer, Investigation of CO2 photoreduction in an annular fluidized bed photoreactor by MP-PIC simulation, Ind. Eng. Chem. Res. 61 (2022) 3123-3136.

[62]

S.S. Tan, L. Zou, E. Hu, Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets, Catal. Today 115 (2006) 269-273.

[63]

R.E. Marinangeli, D.F. Ollis, Photoassisted heterogeneous catalysis with optical fibers, AIChE J. 23 (1977) 417-425.

[64]

T.-V. Nguyen, J.C.S. Wu, Photoreduction of CO2 in an optical-fiber photoreactor: effects of metals addition and catalyst carrier, Appl. Catal. A-Gen. 335 (2008) 112-120.

[65]

P.-Y. Liou, S.-C. Chen, J.C.S. Wu, D. Liu, S. Mackintosh, M. Maroto-Valer, R. Linforth, Photocatalytic CO2 reduction using an internally illuminated monolith photoreactor, Energy Environ. Sci. 4 (2011) 1487-1494.

[66]

X. Zhang, F. Han, B. Shi, S. Farsinezhad, G.P. Dechaine, K. Shankar, Photocatalytic conversion of diluted CO2 into light hydrocarbons using periodically modulated multiwalled nanotube arrays, Angew. Chem. Int. Ed. 51 (2012) 12732-12735.

[67]

Y. Wang, Q. Lai, F. Zhang, X. Shen, M. Fan, Y. He, S. Ren, High efficiency photocatalytic conversion of CO2 with H2O over Pt/TiO2 nanoparticles, RSC Adv. 4 (2014) 44442-44451.

[68]

L. Wang, Z. Huang, X. Yang, L. Rogée, X. Huang, X. Zhang, S.P. Lau, Review on optofluidic microreactors for photocatalysis, Rev. Chem. Eng. 4923 (2022) 1-18.

[69]

H. Jia, Y.L. Wong, A. Jian, C.C. Tsoi, M. Wang, W. Li, W. Zhang, S. Sang, X. Zhang, Microfluidic reactors for plasmonic photocatalysis using gold nanoparticles, Micromachines 10 (2019) 869.

[70]

M. Cheng, S. Yang, R. Chen, X. Zhu, Q. Liao, Y. Huang, Visible light responsive CdS sensitized TiO2 nanorod array films for efficient photocatalytic reduction of gas phase CO2, Mol. Catal. 448 (2018) 185-194.

[71]

K. Tong, L. Chen, L. Yang, X. Du, Y. Yang, Energy transport of photocatalytic carbon dioxide reduction in optical fiber honeycomb reactor coupled with trough concentrated solar power, Catalysts 11 (2021) 829.

[72]

C.C. Lin, T.R. Liu, S.R. Lin, K.M. Boopathi, C.H. Chiang, W.Y. Tzeng, W.C. Chien, H.S. Hsu, C.W. Luo, H.Y. Tsai, H.A. Chen, P.C. Kuo, J. Shiue, J.W. Chiou, W.F. Pong, C.C. Chen, C.W. Chen, Spin-polarized photocatalytic CO2 reduction of Mn-doped perovskite nanoplates, J. Am. Chem. Soc. 144 (2022) 15718-15726.

[73]

M. Tahir, N.S. Amin, Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4, Appl. Catal., B 162 (2015) 98-109.

[74]

X. Li, W. Bi, Z. Wang, W. Zhu, W. Chu, C. Wu, Y. Xie, Surface-adsorbed ions on TiO2 nanosheets for selective photocatalytic CO2 reduction, Nano Res. 11 (2018) 3362-3370.

[75]

Y. Liang, W. Wu, P. Wang, S.-C. Liou, D. Liu, S.H. Ehrman, Scalable fabrication of SnO2/eo-GO nanocomposites for the photoreduction of CO2 to CH4, Nano Res. 11 (2018) 4049-4061.

[76]

C. Xin, M. Hu, K. Wang, X. Wang, Significant enhancement of photocatalytic reduction of CO2 with H2O over ZnO by the formation of basic zinc carbonate, Langmuir 33 (2017) 6667-6676.

[77]

M. Tasbihi, K. Kočí, M. Edelmannová, I. Troppová, M. Reli, R. Schomäcker, Pt/TiO2 photocatalysts deposited on commercial support for photocatalytic reduction of CO2, J. Photochem. Photobiol., A 366 (2018) 72-80.

[78]

D.K. Lee, J.I. Choi, G.H. Lee, Y.-H. Kim, J.K. Kang, Energy states of a core-shell metal oxide photocatalyst enabling visible light absorption and utilization in solar-to-fuel conversion of carbon dioxide, Adv. Energy Mater. 6 (2016) 1600583.

[79]

A. Razzaq, C.A. Grimes, S.-I. In, Facile fabrication of a noble metal-free photocatalyst: TiO2 nanotube arrays covered with reduced graphene oxide, Carbon 98 (2016) 537-544.

[80]

K.-H. Kim, S. Kim, B.C. Moon, J.W. Choi, H.M. Jeong, Y. Kwon, S. Kwon, H.S. Choi, J.K. Kang, Quadruple metal-based layered structure as the photocatalyst for conversion of carbon dioxide into a value added carbon monoxide with high selectivity and efficiency, J. Mater. Chem. A 5 (2017) 8274-8279.

[81]

M.M. Kandy, V.G. Gaikar, Enhanced photocatalytic reduction of CO2 using CdS/Mn2O3 nanocomposite photocatalysts on porous anodic alumina support with solar concentrators, Renew. Energy 139 (2019) 915-923.

[82]

X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers, Nat. Energy 4 (2019) 690-699.

[83]

T.-V. Nguyen, J.C.S. Wu, Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor, Sol. Energy Mater. Sol. Cells 92 (2008) 864-872.

[84]

J.C.S. Wu, H.-M. Lin, C.-L. Lai, Photo reduction of CO2 to methanol using optical-fiber photoreactor, Appl. Catal. A-Gen. 296 (2005) 194-200.

[85]

M. Ren, K. Valsaraj, Inverse opal titania on optical fiber for the photoreduction of CO2 to CH3OH, Int. J. Chem. Eng. 7 (2009) 1-17.

[86]

S. Bhatta, D. Nagassou, S. Mohsenian, J.P. Trelles, Photo-thermochemical decomposition of carbon-dioxide in a direct solar receiver-reactor, Sol. Energy 178 (2019) 201-214.

[87]

M. Tahir, Photocatalytic carbon dioxide reduction to fuels in continuous flow monolith photoreactor using montmorillonite dispersed Fe/TiO2 nanocatalyst, J. Clean. Prod. 170 (2018) 242-250.

[88]

M. Tahir, N.S. Amin, Photocatalytic CO2 reduction with H2O vapors using montmorillonite/TiO2 supported microchannel monolith photoreactor, Chem. Eng. J. 230 (2013) 314-327.

[89]

M. Cheng, S. Yang, R. Chen, X. Zhu, Q. Liao, Y. Huang, Copper-decorated TiO2 nanorod thin films in optofluidic planar reactors for efficient photocatalytic reduction of CO2, Int. J. Hydrogen Energy 42 (2017) 9722-9732.

[90]

J. Fernández-Catalá, M. Navlani-García, Á. Berenguer-Murcia, D. Cazorla-Amorós, Exploring CuO-doped TiO2 modified with carbon nanotubes for CO2 photoreduction in a 2D-flow reactor, J. CO2 Util. 54 (2021) 101796.

[91]

Z. Zhu, W.-R. Huang, C.-Y. Chen, R.-J. Wu, Preparation of Pd–Au/TiO2–WO3 to enhance photoreduction of CO2 to CH4 and CO, J. CO2 Util. 28 (2018) 247-254.

[92]

Z. Xiong, Z. Lei, B. Gong, X. Chen, Y. Zhao, J. Zhang, C. Zheng, J.C.S. Wu, A novel reaction mode using H2 produced from solid-liquid reaction to promote CO2 reduction through solid-gas reaction, Catal. Commun. 89 (2017) 4-8.

[93]

S. Sorcar, Y. Hwang, C.A. Grimes, S.-I. In, Highly enhanced and stable activity of defect-induced titania nanoparticles for solar light-driven CO2 reduction into CH4, Mater, Today Off. 20 (2017) 507-515.

[94]

Y. Ma, Q. Tang, W.-Y. Sun, Z.-Y. Yao, W. Zhu, T. Li, J. Wang, Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration, Appl. Catal., B 270 (2020) 118856.

[95]

A. Olivo, W.A. Thompson, E.R.B. Bay, E. Ghedini, F. Menegazzo, M. Maroto-Valer, M. Signoretto, Investigation of process parameters assessment via design of experiments for CO2 photoreduction in two photoreactors, J. CO2 Util. 36 (2020) 25-32.

[96]

X. Shi, Y. Huang, Y. Bo, D. Duan, Z. Wang, J. Cao, G. Zhu, W. Ho, L. Wang, T. Huang, Y. Xiong, Highly selective photocatalytic CO2 methanation with water vapor on single-atom platinum-decorated defective carbon nitride, Angew. Chem. Int. Ed. 61 (2022) e202203063.

[97]

M. Sellaro, M. Bellardita, A. Brunetti, E. Fontananova, L. Palmisano, E. Drioli, G. Barbieri, CO2 conversion in a photocatalytic continuous membrane reactor, RSC Adv. 6 (2016) 67418-67427.

[98]

L.J. Wang, R.L. Wang, X. Zhang, J.L. Mu, Z.Y. Zhou, Z.M. Su, Improved photoreduction of CO2 with water by tuning the valence band of covalent organic frameworks, ChemSusChem 13 (2020) 2973-2980.

[99]

H. Chen, F. Chu, L. Yang, O. Ola, X. Du, Y. Yang, Enhanced photocatalytic reduction of carbon dioxide in optical fiber monolith reactor with transparent glass balls, Appl. Energy 230 (2018) 1403-1413.

Green Chemical Engineering
Pages 290-306
Cite this article:
Liu L, Li Y, He J, et al. Progress on gas-solid phase photoreactor and its application in CO2 reduction. Green Chemical Engineering, 2024, 5(3): 290-306. https://doi.org/10.1016/j.gce.2023.09.001
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return