AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Machine learning aided investigation on the structure-performance correlation of MOF for membrane-based He/H2 separation

Shitong Zhanga,bYanjing Hea,cZhengqing Zhanga,b( )Chongli Zhonga,b( )
State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China
School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, China
School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
Show Author Information

HIGHLIGHTS

· The structure-performance relationship of MOFs for membrane based He/H2 separation was investigated.

· PLD and ϕ were revealed as the most key features for determining membrane selectivity and He permeability, respectively.

· Pore surfaces terminated with highly electronegative atoms render membranes with improved membrane selectivity.

Graphical Abstract

Abstract

The separation of He/H2 using membrane technology has gained significant interest in the field of He extraction from natural gas. One of the greatest challenges associated with this process is the extremely close kinetic diameters of the two gas molecules, resulting in low membrane selectivity. In this study, we investigated the structure-performance relationship of metal-organic framework (MOF) membranes for He/H2 separation through molecular simulations and machine learning approaches. By conducting molecular simulations, we identified the potential MOF membranes with high separation performance from the Computation-Ready Experimental (CoRE) MOF database, and the diffusion-dominated mechanism was further elucidated. Moreover, random forest (RF)-based machine learning models were established to identify the crucial factors influencing the He/H2 separation performance of MOF membranes. The pore limiting diameter (PLD) and void fraction (φ), are revealed as the most important physical features for determining the membrane selectivity and He permeability, respectively. Additionally, density functional theory (DFT) calculations were carried out to validate the molecular simulation results and suggested that the electronegative atoms on the pore surfaces can enhance the diffusion-based separation of He/H2, which is critical for improving the membrane selectivities of He/H2. This study offers useful insights for designing and developing novel MOF membranes for the separation of He/H2 at the molecular level.

References

[1]

T.E. Rufford, K.I. Chan, S.H. Huang, E.F. May, A review of conventional and emerging process technologies for the recovery of helium from natural gas, Adsorpt. Sci. Technol. 32 (2014) 49–72.

[2]

Z. Dai, J. Deng, X. He, C.A. Scholes, X. Jiang, B. Wang, H. Guo, Y. Ma, L. Deng, Helium separation using membrane technology: recent advances and perspectives, Sep. Purif. Technol. 274 (2021) 119044.

[3]
P. Haussinger, R. Glathaar, W. Rhode, H. Kick, C. Benkmann, J. Weber, H.J. Wunschel, V. Stenke, E. Leicht, H. Stenger, Noble gases, in: F. Ullmann (Ed.), Ullmann's Encyclopedia of Industrial Chemistry, John Wiley and Sons Inc., New Jersey, 2011, pp. 392–448.
[4]

O. Kadioglu, S. Keskin, Efficient separation of helium from methane using MOF membranes, Sep. Purif. Technol. 191 (2018) 192–199.

[5]

C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing, Fuel 96 (2012) 15–28.

[6]

Y. Wang, J. Li, Q. Yang, C. Zhong, Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification, ACS Appl. Mater. Interfaces 8 (2016) 8694–8701.

[7]

A. Soleimany, S.S. Hosseini, F. Gallucci, Recent progress in developments of membrane materials and modification techniques for high performance helium separation and recovery: a review, Chem. Eng. Process 122 (2017) 296–318.

[8]

J. Schrier, Helium separation using porous graphene membranes, J. Phys. Chem. Lett. 1 (2010) 2284–2287.

[9]

M. Yavari, M. Fang, H. Nguyen, T.C. Merkel, H. Lin, Y. Okamoto, Dioxolane-based perfluoropolymers with superior membrane gas separation properties, Macromolecules 51 (2018) 2489–2497.

[10]

C. Chen, A. Ozcan, A.O. Yazaydin, B.P. Ladewig, Gas permeation through single-crystal ZIF-8 membranes, J. Membr. Sci. 575 (2019) 209–216.

[11]

A. Labropoulos, G. Romanos, N. Kakizis, G. Pilatos, E. Favvas, N. Kanellopoulos, Investigating the evolution of N2 transport mechanism during the cyclic CVD post-treatment of silica membranes, Microporous Mesoporous Mater. 110 (2008) 11–24.

[12]

C.A. Scholes, U. Ghosh, Helium separation through polymeric membranes: selectivity targets, J. Membr. Sci. 520 (2016) 221–230.

[13]

C. Gong, X. Peng, M. Zhu, T. Zhou, L. You, S. Ren, X. Wang, X. Gu, Synthesis and performance of STT zeolite membranes for He/N2 and He/CH4 separation, Sep. Purif. Technol. 301 (2022) 121927.

[14]

H. Molavi, A. Shojaei, S.A. Mousavi, Improving mixed-matrix membrane performance via PMMA grafting from functionalized NH2–UiO-66, J. Mater. Chem. A 6 (2018) 2775–2791.

[15]

A.X. Wu, J.A. Drayton, Z.P. Smith, The perfluoropolymer upper bound, AlChE J 65 (2019) e16700.

[16]

T. Van Gestel, J. Barthel, New types of graphene-based membranes with molecular sieve properties for He, H2 and H2O, J. Membr. Sci. 554 (2018) 378–384.

[17]

S.J. Datta, A. Mayoral, N. Murthy Srivatsa Bettahalli, P.M. Bhatt, M. Karunakaran, I.D. Carja, D. Fan, P. Graziane, M. Mileo, R. Semino, G. Maurin, Rational design of mixed-matrix metal-organic framework membranes for molecular separations, Science 376 (2022) 1080–1087.

[18]

C. Zhu, Y. Peng, W. Yang, Modification strategies for metal-organic frameworks targeting at membrane-based gas separations, Green Chem. Eng. 2 (2021) 17–26.

[19]

H. Daglar, S. Aydin, S. Keskin, MOF-based MMMs breaking the upper bounds of polymers for a large variety of gas separations, Sep. Purif. Technol. 281 (2022) 119811.

[20]

C. Ma, Z. Yang, X. Guo, Z. Qiao, C. Zhong, Size-reduced low-crystallinity ZIF-62 for the preparation of mixed-matrix membranes for CH4/N2 separation, J. Membr. Sci. 663 (2022) 121069.

[21]

H.C. Gulbalkan, Z.P. Haslak, C. Altintas, A. Uzun, S. Keskin, Assessing CH4/N2 separation potential of MOFs, COFs, IL/MOF, MOF/Polymer, and COF/Polymer composites, Chem. Eng. J. 428 (2022) 131239.

[22]

K. Chen, K. Xu, L. Xiang, X. Dong, Y. Han, C. Wang, L.-B. Sun, Y. Pan, Enhanced CO2/CH4 separation performance of mixed-matrix membranes through dispersion of sorption-selective MOF nanocrystals, J. Membr. Sci. 563 (2018) 360–370.

[23]

C. Altintas, S. Keskin, Molecular simulations of MOF membranes and performance predictions of MOF/polymer mixed matrix membranes for CO2/CH4 separations, ACS Sustain. Chem. Eng. 7 (2018) 2739–2750.

[24]

F. Guo, D. Li, R. Ding, J. Gao, X. Ruan, X. Jiang, G. He, W. Xiao, Constructing MOF-doped two-dimensional composite material ZIF-90@C3N4 mixed matrix membranes for CO2/N2 separation, Sep. Purif. Technol. 280 (2022) 119803.

[25]

N. Habib, O. Durak, M. Zeeshan, A. Uzun, S. Keskin, A novel IL/MOF/polymer mixed matrix membrane having superior CO2/N2 selectivity, J. Membr. Sci. 658 (2022) 120712.

[26]

Y. Yoo, V. Varela-Guerrero, H.-K. Jeong, Isoreticular metal-organic frameworks and their membranes with enhanced crack resistance and moisture stability by surfactant-assisted drying, Langmuir 27 (2011) 2652–2657.

[27]

N. Hara, M. Yoshimune, H. Negishi, K. Haraya, S. Hara, T. Yamaguchi, Diffusive separation of propylene/propane with ZIF-8 membranes, J. Membr. Sci. 450 (2014) 215–223.

[28]

N. Hara, M. Yoshimune, H. Negishi, K. Haraya, S. Hara, T. Yamaguchi, Metal-organic framework membranes with layered structure prepared within the porous support, RSC Adv. 3 (2013) 14233–14236.

[29]

Z. Zhao, X. Ma, Z. Li, Y. Lin, Synthesis, characterization and gas transport properties of MOF-5 membranes, J. Membr. Sci. 382 (2011) 82–90.

[30]

H. Daglar, S. Keskin, Combining machine learning and molecular simulations to unlock gas separation potentials of MOF membranes and MOF/polymer MMMs, ACS Appl. Mater. Interfaces 14 (2022) 32134–32148.

[31]

P. Zarabadi-Poor, R. Marek, Metal-organic frameworks for helium recovery from natural gas via N2/He separation: a computational screening, J. Phys. Chem. C 123 (2019) 3469–3475.

[32]

Y.G. Chung, E. Haldoupis, B.J. Bucior, M. Haranczyk, S. Lee, H. Zhang, K.D. Vogiatzis, M. Milisavljevic, S. Ling, J.S. Camp, Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019, J. Chem. Eng. Data 64 (2019) 5985–5998.

[33]

D. Ongari, P.G. Boyd, S. Barthel, M. Witman, M. Haranczyk, B. Smit, Accurate characterization of the pore volume in microporous crystalline materials, Langmuir 33 (2017) 14529–14538.

[34]

A.K. Rappé, C.J. Casewit, K. Colwell, W.A. Goddard Ⅲ, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (1992) 10024–10035.

[35]

C.E. Wilmer, K.C. Kim, R.Q. Snurr, An extended charge equilibration method, J. Phys. Chem. Lett. 3 (2012) 2506–2511.

[36]

P. Bleiziffer, K. Schaller, S. Riniker, Machine learning of partial charges derived from high-quality quantum-mechanical calculations, J. Chem. Inf. Model. 58 (2018) 579–590.

[37]

X. Wang, F. Ma, S. Liu, L. Chen, S. Xiong, X. Dai, B. Tai, L. He, M. Yuan, P. Mi, Thermodynamics-kinetics-balanced metal-organic framework for in-depth radon removal under ambient conditions, J. Am. Chem. Soc. 144 (2022) 13634–13642.

[38]

S.K. Singh, A.T. Sose, F. Wang, K.K. Bejagam, S.A. Deshmukh, Data driven discovery of MOFs for hydrogen gas adsorption, J. Chem. Theor. Comput. 19 (2023) 6686–6703.

[39]
J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, Wiley, New York, 1954.
[40]

R.B. Getman, J.H. Miller, K. Wang, R.Q. Snurr, Metal alkoxide functionalization in metal-organic frameworks for enhanced ambient-temperature hydrogen storage, J. Phys. Chem. C 115 (2011) 2066–2075.

[41]

Q. Yang, D. Liu, C. Zhong, J.-R. Li, Development of computational methodologies for metal-organic frameworks and their application in gas separations, Chem. Rev. 113 (2013) 8261–8323.

[42]

Z. Zhang, X. Cao, C. Geng, Y. Sun, Y. He, Z. Qiao, C. Zhong, Machine learning aided high-throughput prediction of ionic liquid@MOF composites for membrane-based CO2 capture, J. Membr. Sci. 650 (2022) 120399.

[43]

J. Nan, X. Dong, W. Wang, W. Jin, N. Xu, Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support, Langmuir 27 (2011) 4309–4312.

[44]

Y. Mao, W. Cao, J. Li, Y. Liu, Y. Ying, L. Sun, X. Peng, Enhanced gas separation through well-intergrown MOF membranes: seed morphology and crystal growth effects, J. Mater. Chem. A 1 (2013) 11711–11716.

[45]

M.D. Segall, P.J. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter 14 (2002) 2717.

[46]

M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992) 1045.

[47]

J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865.

[48]

A. Tkatchenko, M. Scheffler, Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data, Phys. Rev. Lett. 102 (2009) 073005.

[49]

Y. Sun, Z. Zhang, L. Tian, H. Huang, C. Geng, X. Guo, Z. Qiao, C. Zhong, Confined ionic liquid-built gas transfer pathways for efficient propylene/propane separation, ACS Appl. Mater. Interfaces 13 (2021) 49050–49057.

[50]

X. Yuan, X. Deng, C. Cai, Z. Shi, H. Liang, S. Li, Z. Qiao, Machine learning and high-throughput computational screening of hydrophobic metal-organic frameworks for capture of formaldehyde from air, Green Energy Environ. 6 (2021) 759–770.

[51]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, Scikit-learn: machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[52]

X. Cao, Y. He, Z. Zhang, Y. Sun, Q. Han, Y. Guo, C. Zhong, Predicting of covalent organic frameworks for membrane-based isobutene/1,3-butadiene separation: combining molecular simulation and machine learning, Chem. Res. Chin. Univ. 38 (2022) 421–427.

[53]

L.C. Lin, K. Lee, L. Gagliardi, J.B. Neaton, B. Smit, Force-field development from electronic structure calculations with periodic boundary conditions: applications to gaseous adsorption and transport in metal-organic frameworks, J. Chem. Theor. Comput. 10 (2014) 1477–1488.

Green Chemical Engineering
Pages 526-532
Cite this article:
Zhang S, He Y, Zhang Z, et al. Machine learning aided investigation on the structure-performance correlation of MOF for membrane-based He/H2 separation. Green Chemical Engineering, 2024, 5(4): 526-532. https://doi.org/10.1016/j.gce.2024.01.005

79

Views

2

Downloads

0

Crossref

1

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 21 September 2023
Revised: 30 January 2024
Accepted: 31 January 2024
Published: 01 February 2024
© 2024 Institute of Process Engineering, Chinese Academy of Sciences.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return