AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

LKB1 tumor suppressor: Therapeutic opportunities knock when LKB1 is inactivated

Wei Zhou( )Jun ZhangAdam I. Marcus
Department of Hematology and Medical Oncology, The Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

LKB1 is commonly thought of as a tumor suppressor gene because its hereditary mutation is responsible for a cancer syndrome, and somatic inactivation of LKB1 is found in non-small cell lung cancer, melanoma, and cervical cancers. However, unlike other tumor suppressors whose main function is to either suppress cell proliferation or promote cell death, one of the functions of LKB1-regulated AMPK signaling is to suppress cell proliferation in order to promote cell survival under energetic stress conditions. This unique, pro-survival function of LKB1 has led to the discovery of reagents, such as phenformin, that specifically exploit the vulnerability of LKB1-null cells in their defect in sensing energetic stress. Such targeted agents represent a novel treatment strategy because they induce cell killing when LKB1 is absent. This review article summarizes various vulnerabilities of LKB1-mutant cells that have been reported in the literature and discusses the potential of using existing or developing novel reagents to target cancer cells with defective LKB1.

References

1

Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386(6625):623-627.

2

Khuri FR, Nemunaitis J, Ganly I, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. Aug 2000;6(8):879-885.

3

O'Shea CC, Johnson L, Bagus B, et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell. Dec 2004;6(6):611-623.

4
Sanchez-Cespedes M, Parrella P, Esteller M, et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. Jul 1 2002;62(13):3659-3662.
5
Guldberg P, Thor Straten P, Ahrenkiel V, Seremet T, Kirkin AF, Zeuthen J. Somatic mutation of the Peutz-Jeghers syndrome gene, LKB1/STK11, in malignant melanoma. Oncogene. Mar 4 1999;18(9):1777-1780.
6

McCabe MT, Powell DR, Zhou W, Vertino PM. Homozygous deletion of the STK11/LKB1 locus and the generation of novel fusion transcripts in cervical cancer cells. Cancer Genet Cytogenet. Mar 2010;197(2):130-141.

7
Baas AF, Boudeau J, Sapkota GP, et al. Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J. Jun 16 2003;22(12):3062-3072.
8
Lizcano JM, Goransson O, Toth R, et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. Feb 25 2004;23(4):833-843.
9

Rowan A, Churchman M, Jefferey R, Hanby A, Poulsom R, Tomlinson I. In situ analysis of LKB1/STK11 mRNA expression in human normal tissues and tumours. J Pathol. Oct 2000;192(2):203-206.

10
Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. Jan 8 1998;391(6663):184-187.
11
Amos CI, Frazier ML, Wei C, McGarrity TJ. Peutz-Jeghers Syndrome. 1993.
12

Alessi DR, Sakamoto K, Bayascas JR. LKB1-dependent signaling pathways. Annu Rev Biochem. 2006;75:137-163.

13
Gill RK, Yang SH, Meerzaman D, et al. Frequent homozygous deletion of the LKB1/STK11 gene in non-small cell lung cancer. Oncogene. Sep 1 2011;30(35):3784-3791.
14

Fang R, Zheng C, Sun Y, et al. Integrative genomic analysis reveals a high frequency of LKB1 genetic alteration in Chinese lung adenocarcinomas. J Thorac Oncol. Feb 2014;9(2):254-258.

15

Zhong D, Guo L, de Aguirre I, et al. LKB1 mutation in large cell carcinoma of the lung. Lung Cancer. Sep 2006;53(3):285-294.

16
Ji H, Ramsey MR, Hayes DN, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature. Aug 16 2007;448(7155):807-810.
17

Han X, Li F, Fang Z, et al. Transdifferentiation of lung adenocarcinoma in mice with Lkb1 deficiency to squamous cell carcinoma. Nat Commun. 2014;5:3261.

18
Esteller M, Avizienyte E, Corn PG, et al. Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene. Jan 6 2000;19(1):164-168.
19

Trojan J, Brieger A, Raedle J, Esteller M, Zeuzem S. 5'-CpG island methylation of the LKB1/STK11 promoter and allelic loss at chromosome 19p13.3 in sporadic colorectal cancer. Gut. Aug 2000;47(2):272-276.

20

Yu J, Zhang HY, Ma ZZ, Lu W, Wang YF, Zhu JD. Methylation profiling of twenty four genes and the concordant methylation behaviours of nineteen genes that may contribute to hepatocellular carcinogenesis. Cell Res. Oct 2003;13(5):319-333.

21
Yu J, Zhang H, Gu J, et al. Methylation profiles of thirty four promoter-CpG islands and concordant methylation behaviours of sixteen genes that may contribute to carcinogenesis of astrocytoma. BMC Cancer. Sep 14 2004;4:65.
22

Lee SM, Choi JE, Na YK, et al. Genetic and epigenetic alterations of the LKB1 gene and their associations with mutations in TP53 and EGFR pathway genes in Korean non-small cell lung cancers. Lung Cancer. Aug 2013;81(2):194-199.

23
Zheng B, Jeong JH, Asara JM, et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol Cell. Jan 30 2009;33(2):237-247.
24

Esteve-Puig R, Canals F, Colome N, Merlino G, Recio JA. Uncoupling of the LKB1-AMPKalpha energy sensor pathway by growth factors and oncogenic BRAF. PLoS One. 2009;4(3):e4771.

25
El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. Jan 7 2000;275(1):223-228.
26
Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. Jun 15 2000;348(Pt 3):607-614.
27
Shackelford DB, Abt E, Gerken L, et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell. Feb 11 2013;23(2):143-158.
28
Oakhill JS, Chen ZP, Scott JW, et al. beta-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc Natl Acad Sci U S A. Nov 9 2010;107(45):19237-19241.
29
Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem J. Apr 1 2007;403(1):139-148.
30
Houde VP, Ritorto MS, Gourlay R, et al. Investigation of LKB1 Ser431 phosphorylation and Cys433 farnesylation using mouse knockin analysis reveals an unexpected role of prenylation in regulating AMPK activity. Biochem. J. Feb 15 2014;458(1):41-56.
31

Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). Mar 2012;122(6):253-270.

32

Zhou W, Marcus AI, Vertino PM. Dysregulation of mTOR activity through LKB1 inactivation. Chin J Cancer. Aug 2013;32(8):427-433.

33

Lettieri Barbato D, Vegliante R, Desideri E, Ciriolo MR. Managing lipid metabolism in proliferating cells: New perspective for metformin usage in cancer therapy. Biochim Biophys Acta. Apr 2014;1845(2):317-324.

34
Shaw RJ, Kosmatka M, Bardeesy N, et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A. Mar 9 2004;101(10):3329-3335.
35
Nafz J, De-Castro Arce J, Fleig V, Patzelt A, Mazurek S, Rosl F. Interference with energy metabolism by 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside induces HPV suppression in cervical carcinoma cells and apoptosis in the absence of LKB1. Biochem J. May 1 2007;403(3):501-510.
36

Kim WH, Lee JW, Suh YH, et al. AICAR potentiates ROS production induced by chronic high glucose: roles of AMPK in pancreatic beta-cell apoptosis. Cell Signal. Apr 2007;19(4):791-805.

37

Kim YM, Hwang JT, Kwak DW, Lee YK, Park OJ. Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells. Ann N Y Acad Sci. Jan 2007;1095:496-503.

38

Hawley SA, Boudeau J, Reid JL, et al. Complexes between the LKB1 tumor suppressor, STRADalpha/beta and MO25alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol. 2003;2(4):28.

39
Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome. Nature. Dec 13 2001;414(6865):821-827.
40
Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem. Apr 15 1995;229(2):558-565.
41

Woollhead AM, Sivagnanasundaram J, Kalsi KK, et al. Pharmacological activators of AMP-activated protein kinase have different effects on Na+ transport processes across human lung epithelial cells. Br J Pharmacol. Aug 2007;151(8):1204-1215.

42

Huang S, Houghton PJ. Targeting mTOR signaling for cancer therapy. Curr Opin Pharmacol. Aug 2003;3(4):371-377.

43

Wang X, Sun SY. Enhancing mTOR-targeted cancer therapy. Expert Opin Ther Targets. Oct 2009;13(10):1193-1203.

44
Cheng H, Liu P, Zhang F, et al. A genetic mouse model of invasive endometrial cancer driven by concurrent loss of Pten and Lkb1 Is highly responsive to mTOR inhibition. Cancer Res. Jan 1 2014;74(1):15-23.
45
Xu C, Fillmore CM, Koyama S, et al. Loss of Lkb1 and Pten Leads to Lung Squamous Cell Carcinoma with Elevated PD-L1 Expression. Cancer Cell. Apr 30 2014.
46

Hannan KM, Sanij E, Rothblum LI, Hannan RD, Pearson RB. Dysregulation of RNA polymerase I transcription during disease. Biochim Biophys Acta. Mar-Apr 2013;1829(3–4):342-360.

47
Bywater MJ, Poortinga G, Sanij E, et al. Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. Cancer Cell. Jul 10 2012;22(1):51-65.
48

Zhao J, Yuan X, Frodin M, Grummt I. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol Cell. Feb 2003;11(2):405-413.

49
Mayer C, Zhao J, Yuan X, Grummt I. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev. Feb 15 2004;18(4):423-434.
50
Hoppe S, Bierhoff H, Cado I, et al. AMP-activated protein kinase adapts rRNA synthesis to cellular energy supply. Proc Natl Acad Sci U S A. Oct 20 2009;106(42):17781-17786.
51

Marcus AI, Zhou W. LKB1 regulated pathways in lung cancer invasion and metastasis. J Thorac Oncol. Dec 2010;5(12):1883-1886.

52
Carretero J, Shimamura T, Rikova K, et al. Integrative genomic and proteomic analyses identify targets for Lkb1-deficient metastatic lung tumors. Cancer Cell. Jun 15 2010;17(6):547-559.
53
Kline ER, Shupe J, Gilbert MM, Zhou W, Marcus AI. LKB1 represses focal adhesion kinase (FAK) signaling via a FAK-LKB1 complex to regulate FAK site maturation and directional persistence. J Biol Chem. May 1 2013.
54

Liu Y, Marks K, Cowley GS, et al. Metabolic and functional genomic studies identify deoxythymidylate kinase as a target in LKB1-mutant lung cancer. Cancer Discov. Aug 2013;3(8):870-879.

55

Kline ER, Muller S, Pan L, Tighiouart M, Chen ZG, Marcus AI. Localization-specific LKB1 loss in head and neck squamous cell carcinoma metastasis. Head Neck. Oct 2011;33(10):1501-1512.

56
Bouchekioua-Bouzaghou K, Poulard C, Rambaud J, et al. LKB1 when associated with methylatedERa is a marker of bad prognosis in breast cancer. Int J Cancer. Feb 12 2014.
57

Dorfman J, Macara IG. STRADalpha regulates LKB1 localization by blocking access to importin-alpha, and by association with Crm1 and exportin-7. Mol Biol Cell. Apr 2008;19(4):1614-1626.

58

Sanli T, Steinberg GR, Singh G, Tsakiridis T. AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther. Feb 2014;15(2):156-169.

59
Sanli T, Rashid A, Liu C, et al. Ionizing radiation activates AMP-activated kinase (AMPK): a target for radiosensitization of human cancer cells. Int J Radiat Oncol Biol Phys. Sep 1 2010;78(1):221-229.
60

Amatya PN, Kim HB, Park SJ, et al. A role of DNA-dependent protein kinase for the activation of AMP-activated protein kinase in response to glucose deprivation. Biochim Biophys Acta. Dec 2012;1823(12):2099-2108.

61
Fernandes N, Sun Y, Chen S, et al. DNA damage-induced association of ATM with its target proteins requires a protein interaction domain in the N terminus of ATM. J Biol Chem. Apr 15 2005;280(15):15158-15164.
62
Sapkota GP, Deak M, Kieloch A, et al. Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. Biochem J. Dec 1 2002;368(Pt 2):507-516.
63
Alexander A, Cai SL, Kim J, et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci U S A. Mar 2 2010;107(9):4153-4158.
64
Alexander A, Walker CL. Differential localization of ATM is correlated with activation of distinct downstream signaling pathways. Cell Cycle. Sep 15 2010;9(18):3685-3686.
65
Scott TL, Rangaswamy S, Wicker CA, Izumi T. Repair of oxidative DNA damage and cancer: recent progress in DNA base excision repair. Antioxid Redox Signal. Feb 1 2014;20(4):708-726.
66
Kim HS, Mendiratta S, Kim J, et al. Systematic identification of molecular subtype-selective vulnerabilities in non-small-cell lung cancer. Cell. Oct 24 2013;155(3):552-566.
67
Dice JF. Lysosomal Pathways for Protein Degradation; 2000. Landes Bioscience Eurekah.com.
68

Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov. Jan 2014;13(1):63-79.

69
Menzel M, Meckbach D, Weide B, et al. In melanoma, Hippo signaling is affected by copy number alterations and YAP1 overexpression impairs patient survival. Pigment Cell Melanoma Res. Apr 4 2014.
70

Steinhardt AA, Gayyed MF, Klein AP, et al. Expression of Yes-associated protein in common solid tumors. Hum Pathol. Nov 2008;39(11):1582-1589.

71

Wang Y, Dong Q, Zhang Q, Li Z, Wang E, Qiu X. Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer science. May 2010;101(5):1279-1285.

72
Nguyen HB, Babcock JT, Wells CD, Quilliam LA. LKB1 tumor suppressor regulates AMP kinase/mTOR-independent cell growth and proliferation via the phosphorylation of Yap. Oncogene. Aug 29 2013;32(35):4100-4109.
73

Mohseni M, Sun J, Lau A, et al. A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol. Jan 2014;16(1):108-117.

74
Liu-Chittenden Y, Huang B, Shim JS, et al. Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev. Jun 15 2012;26(12):1300-1305.
75
Jiao S, Wang H, Shi Z, et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell. Feb 10 2014;25(2):166-180.
76

Yang W, Soares J, Greninger P, et al. Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. Jan 2013;41(Database issue):D955-961.

77
Nony P, Gaude H, Rossel M, Fournier L, Rouault JP, Billaud M. Stability of the Peutz-Jeghers syndrome kinase LKB1 requires its binding to the molecular chaperones Hsp90/Cdc37. Oncogene. Dec 11 2003;22(57):9165-9175.
78
Boudeau J, Deak M, Lawlor MA, Morrice NA, Alessi DR. Heat-shock protein 90 and Cdc37 interact with LKB1 and regulate its stability. Biochem J. Mar 15 2003;370(Pt 3):849-857.
79

Xu W, Neckers L. The double edge of the HSP90-CDC37 chaperone machinery: opposing determinants of kinase stability and activity. Future Oncol. Aug 2012;8(8):939-942.

80
Gaude H, Aznar N, Delay A, et al. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1. Oncogene. Mar 22 2012;31(12):1582-1591.
81

Andrade-Vieira R, Xu Z, Colp P, Marignani PA. Loss of LKB1 expression reduces the latency of ErbB2-mediated mammary gland tumorigenesis, promoting changes in metabolic pathways. PLoS One. 2013;8(2):e56567.

82
Gao Y, Xiao Q, Ma H, et al. LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling. Proc Natl Acad Sci U S A. Nov 2 2010;107(44):18892-18897.
83

Sausville E, Lorusso P, Carducci M, et al. Phase Ⅰ dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors. Cancer Chemother Pharmacol. Mar 2014;73(3):539-549.

84

Seto T, Esaki T, Hirai F, et al. Phase I, dose-escalation study of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumours. Cancer Chemother Pharmacol. Sep 2013;72(3):619-627.

Genes & Diseases
Pages 64-74
Cite this article:
Zhou W, Zhang J, Marcus AI. LKB1 tumor suppressor: Therapeutic opportunities knock when LKB1 is inactivated. Genes & Diseases, 2014, 1(1): 64-74. https://doi.org/10.1016/j.gendis.2014.06.002

296

Views

3

Downloads

32

Crossref

N/A

Web of Science

32

Scopus

0

CSCD

Altmetrics

Received: 09 June 2014
Accepted: 13 June 2014
Published: 23 July 2014
© 2014, Chongqing Medical University. All rights reserved.
Return