AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (688.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Nuclear Magnetic Resonance technique in tumor metabolism

Ting LiaPengchi Dengb,( )
College of Chemistry, Sichuan University, Chengdu, China
Analytical & Testing Center, Sichuan University, Chengdu, China

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

Cancer is one of the most serious diseases that cause an enormous number of deaths all over the world. Tumor metabolism has great discrimination from that of normal tissues. Exploring the tumor metabolism may be one of the best ways to find biomarkers for cancer detection, diagnosis and to provide novel insights into internal physiological state where subtle changes may happen in metabolite concentrations. Nuclear Magnetic Resonance (NMR) technique nowadays is a popular tool to analyze cell extracts, tissues and biological fluids, etc, since it is a relatively fast and an accurate technique to supply abundant biochemical information at molecular levels for tumor research. In this review, approaches in tumor metabolism are discussed, including sample collection, data profiling and multivariate data analysis methods etc. Some typical applications of NMR are also summarized in tumor metabolism.

References

1

Siegel RL, Miller KD, Jemal A. Cancer statistics. CA A Cancer J Clin. 2015;65(1): 5–29.

2

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics. CA A Cancer J Clin. 2012;65(2): 87–108.

3

Oken MM, Hocking WG, Kvale PA, et al. Screening by chest radiograph and lung cancer mortality: the prostate, lung, colorectal, and ovarian (plco) randomized trial. JAMA. 2011;306(17): 1865–1873.

4
Oken MM, Marcus PM, Hu P, et al. Baseline chest radiograph for lung cancer detection in the randomized prostate, lung, colorectal and ovarian cancer screening trial. J Natl Cancer Inst. December 21, 2005;97(24): 1832–1839.
5

Karahalli E, Yilmaz A, Türker H, Özvaran K. Usefulness of various diagnostic techniques during fiberoptic bronchoscopy for endoscopically visible lung cancer: should cytologic examinations be performed routinely? Respiration. 2001;68(6):611–614.

6

Berrington de González A, Mahesh M, Kim K, et al. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Archives Intern Med. 2009;169(22):2071–2077.

7
Berrington de González A, Kim KP, Berg CD. Low-dose lung computed tomography screening before age 55: estimates of the mortality reduction required to outweigh the radiation-induced cancer risk. J Med Screen. September 1, 2008;15(3): 153–158.
8

Padhani AR, Liu G, Mu-Koh D, et al. Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia. 2009;11(2):102–125.

9
Chenevert TL, McKeever PE, Ross BD. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res. September 1, 1997;3(9): 1457–1466.
10

Juweid ME, Cheson BD. Positron-emission tomography and assessment of cancer therapy. N Engl J Med. 2006;354(5):496–507.

11

Yi CA, Lee KS, Lee HY, et al. Coregistered whole body magnetic resonance imaging-positron emission tomography (MRI-PET) versus PET-computed tomography plus brain MRI in staging resectable lung cancer. Cancer. 2013;119(10):1784–1791.

12

Erasmus JJ, Sabloff BS. CT, positron emission tomography, and MRI in staging lung cancer. Clin Chest Med. 2008;29(1):39–57.

13

Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010;6(1):78–95.

14

Claudino WM, Goncalves PH, di Leo A, Philip PA, Sarkar FH. Metabolomics in cancer: a bench-to-bedside intersection. Crit Rev Oncol Hematol. 2012;84(1):1–7.

15

Patel S, Ahmed S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal. 2015;107:63–74.

16
Yizhak K, Benyamini T, Liebermeister W, Ruppin E, Shlomi T. Integrating quantitative proteomics and metabolomics with a genome-scale metabolic network model. Bioinformatics. June 15, 2010;26(12): i255-i260.
17
Nicholson JK, Wilson ID. High resolution proton magnetic resonance spectroscopy of biological fluids. Prog Nucl Magnetic Reson Spectrosc. 1989/01/01;21(4): 449–501.
18
Nambiar PR, Gupta RR, Misra V. An “Omics” based survey of human colon cancer. Mutat Res Fundam Mol Mech Mutagen. 11/10/2010;693(1–2): 3–18.
19

Raamsdonk LM, Teusink B, Broadhurst D, et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol. 2001;19(1):45–50.

20

Bino RJ, Hall RD, Fiehn O, et al. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 2004;9(9):418–425.

21

Kell DB. Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov Today. 2006;11(23):1085–1092.

22
Nicholson JK, Lindon JC, Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999/01/01;29(11): 1181–1189.
23
Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL. Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev. 2011/01;40(1): 387–426.
24
Bathen TF, Sitter B, Sjøbakk TE, Tessem M-B, Gribbestad IS. Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res. 2010/09;70(17): 6692–6696.
25

Yang J, Xu G, Zheng Y, et al. Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J Chromatogr B. 2004;813(1):59–65.

26

Griffin JL, Shockcor JP. Metabolic profiles of cancer cells. Nat Rev Cancer. 2004;4(7):551–561.

27

Woo HM, Kim KM, Choi MH, et al. Mass spectrometry based metabolomic approaches in urinary biomarker study of women's cancers. Clin Chim Acta. 2009;400(1):63–69.

28
Zürbig P, Mischak H. Capillary Electrophoresis Coupled to Mass Spectrometry for Biomarker Discovery and Diagnosis of Kidney Diseases. 2008
29

Kolch W, Neusüß C, Pelzing M, Mischak H. Capillary electrophoresis–mass spectrometry as a powerful tool in clinical diagnosis and biomarker discovery. Mass Spectrom Rev. 2005;24(6):959–977.

30

Zhang J, Wei S, Liu L, et al. NMR-based metabolomics study of canine bladder cancer. Biochimica Biophysica Acta (BBA) – Mol Basis Dis. 2012;1822(11):1807–1814.

31

Gebregiworgis T, Powers R. Application of NMR metabolomics to search for human disease biomarkers. Comb Chem High Throughput Screen. 2012;15(8):595–610.

32

Zira AN, Theocharis SE, Mitropoulos D, Migdalis V, Mikros E. 1H NMR metabonomic analysis in renal cell carcinoma: a possible diagnostic tool. J Proteome Res. 2010;9(8):4038–4044.

33

Yang C, Richardson AD, Osterman A, Smith JW. Profiling of central metabolism in human cancer cells by two-dimensional NMR, GC-MS analysis, and isotopomer modeling. Metabolomics. 2008;4(1):13–29.

34

de Graaf RA, Behar KL. Quantitative 1H NMR spectroscopy of blood plasma metabolites. Anal Chem. 2003;75(9):2100–2104.

35

Wilson M, Davies NP, Brundler M-A, McConville C, Grundy RG, Peet AC. High resolution magic angle spinning 1H NMR of childhood brain and nervous system tumours. Mol Cancer. 2009;8(1):1–11.

36

DeFeo EM, Wu C-L, McDougal WS, Cheng LL. A decade in prostate cancer: from NMR to metabolomics. Nat Rev Urol. 2011;8(6):301–311.

37

Denkert C, Bucher E, Hilvo M, et al. Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery. Genome Med. 2012;4(4):37.

38

Li CW, Kuo YC, Chen CY, et al. Quantification of choline compounds in human hepatic tumors by proton MR spectroscopy at 3T. Magnetic Reson Med. 2005;53(4):770–776.

39
Tosi MR, Tugnoli V, Bottura G, Lucchi P, Battaglia A, Giorgianni P. Biochemical characterization of human renal tumors by in vitro nuclear magnetic resonance. J Mol Struct. 5/30/ 2001;565–566: 323–327.
40

Zhang X, Xu L, Shen J, et al. Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochimica Biophysica Acta (BBA) – Mol Basis Dis. 2013;1832(8):1207–1216.

41

Dumas M-E, Maibaum EC, Teague C, et al. Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study. Anal Chem. 2006;78(7):2199–2208.

42
Gil AM, de Pinho PG, Monteiro MS, Duarte IF. NMR metabolomics of renal cancer: an overview. Bioanalysis. 2015/09/01;7(18): 2361–2374.
43

Liu M, Nicholson JK, Lindon JC. High-resolution diffusion and relaxation edited one-and two-dimensional 1H NMR spectroscopy of biological fluids. Anal Chem. 1996;68(19):3370–3376.

44

Martin-Pastor M. Experiments for the editing of singlet peaks and simplification of 1H NMR spectra of complex mixtures. J Agric food Chem. 2014;62(5):1190–1197.

45

Katz-Brull R, Margalit R, Bendel P, Degani H. Choline metabolism in breast cancer; 2H-, 13C- and 31P-NMR studies of cells and tumors. Magnetic Reson Mater Phys Biol Med. 1998;6(1):44–52.

46

Daly PF, Lyon RC, Faustino PJ, Cohen JS. Phospholipid metabolism in cancer cells monitored by 31P NMR spectroscopy. J Biol Chem. 1987;262(31):14875–14878.

47

Shanaiah N, Desilva MA, Gowda GN, Raftery MA, Hainline BE, Raftery D. Class selection of amino acid metabolites in body fluids using chemical derivatization and their enhanced 13C NMR. Proc Natl Acad Sci. 2007;104(28):11540–11544.

48

Emwas A-HM, Salek RM, Griffin JL, Merzaban J. NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations. Metabolomics. 2013;9(5):1048–1072.

49

Duarte IF, Gil AM. Metabolic signatures of cancer unveiled by NMR spectroscopy of human biofluids. Prog Nucl Magnetic Reson Spectrosc. 2012;62:51–74.

50

Ah Zhang, Sun H, Qiu S, Xj Wang. NMR-based metabolomics coupled with pattern recognition methods in biomarker discovery and disease diagnosis. Magnetic Reson Chem. 2013;51(9):549–556.

51

Tiziani S, Lopes V, Günther UL. Early stage diagnosis of oral cancer using 1H NMR–based metabolomics. Neoplasia. 2009; 11(3), 269–IN210.

52

Jordan KW, Cheng LL. NMR-based metabolomics approach to target biomarkers for human prostate cancer. Expert Rev Proteomics. 2007;4(3):389–400.

53

DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7(1):11–20.

54

Rocha CM, Carrola J, Barros AS, et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of blood plasma. J Proteome Res. 2011;10(9):4314–4324.

55

OuYang D, Xu J, Huang H, Chen Z. Metabolomic Profiling of serum from human pancreatic cancer patients using 1H NMR spectroscopy and principal component analysis. Appl Biochem Biotechnol. 2011;165(1):148–154.

56

Slupsky CM, Steed H, Wells TH, et al. Urine metabolite analysis offers potential early diagnosis of ovarian and breast cancers. Clin Cancer Res. 2010;16(23):5835–5841.

57

Dunne VG, Bhattachayya S, Besser M, Rae C, Griffin JL. Metabolites from cerebrospinal fluid in aneurysmal subarachnoid haemorrhage correlate with vasospasm and clinical outcome: a pattern-recognition 1H NMR study. NMR Biomed. 2005;18(1):24–33.

58

Wei J, Xie G, Zhou Z, et al. Salivary metabolite signatures of oral cancer and leukoplakia. Int J Cancer. 2011;129(9):2207–2217.

59

Monleon D, Morales JM, Barrasa A, Lopez JA, Vazquez C, Celda B. Metabolite profiling of fecal water extracts from human colorectal cancer. NMR Biomed. 2009;22(3):342–348.

60

Tomlins AM, Foxall PJ, Lindon JC, et al. High resolution magic angle spinning 1H nuclear magnetic resonance analysis of intact prostatic hyperplastic and tumour tissues. Anal Commun. 1998;35(3):113–115.

61

Beckonert O, Coen M, Keun HC, et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc. 2010;5(6):1019–1032.

62

Somashekar BS, Kamarajan P, Danciu T, et al. Magic angle spinning NMR-based metabolic profiling of head and neck squamous cell carcinoma tissues. J proteome Res. 2011;10(11):5232–5241.

63

Sykes BD. Urine stability for metabolomic studies: effects of preparation and storage. Metabolomics. 2007;3(1):19–27.

64

Bernini P, Bertini I, Luchinat C, Nincheri P, Staderini S, Turano P. Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR. 2011;49(3–4):231–243.

65

Brown SA, Simpson AJ, Simpson MJ. Evaluation of sample preparation methods for nuclear magnetic resonance metabolic profiling studies with Eisenia fetida. Environ Toxicol Chem. 2008;27(4):828–836.

66

Reily MD, Robosky LC, Manning ML, Butler A, Baker JD, Winters RT. DFTMP, an NMR reagent for assessing the near-neutral pH of biological samples. J Am Chem Soc. 2006;128(38):12360–12361.

67

Grimes JH, O'Connell TM. The application of micro-coil NMR probe technology to metabolomics of urine and serum. J Biomol NMR. 2011;49(3–4):297–305.

68

Canelas AB, Ras C, Ten Pierick A, van Dam JC, Heijnen JJ, Van Gulik WM. Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics. 2008;4(3):226–239.

69

Briscoe CJ, Hage DS. Factors affecting the stability of drugs and drug metabolites in biological matrices. Bioanalysis.2009.

70

Tiziani S, Emwas A-H, Lodi A, et al. Optimized metabolite extraction from blood serum for 1H nuclear magnetic resonance spectroscopy. Anal Biochem. 2008;377(1):16–23.

71

Psychogios N, Hau DD, Peng J, et al. The human serum metabolome. PLoS One. 2011;6(2):e16957.

72

Rasmussen LG, Savorani F, Larsen TM, Dragsted LO, Astrup A, Engelsen SB. Standardization of factors that influence human urine metabolomics. Metabolomics. 2011;7(1):71–83.

73

Beger RD. A review of applications of metabolomics in cancer. Metabolites. 2013;3(3):552–574.

74

Emwas A-H, Luchinat C, Turano P, et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics. 2015;11(4):872–894.

75

Wang J, Zhang S, Li Z, et al. 1H-NMR-based metabolomics of tumor tissue for the metabolic characterization of rat hepatocellular carcinoma formation and metastasis. Tumor Biol. 2011;32(1):223–231.

76
Jonsson P, Johansson AI, Gullberg J, et al. High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses. Anal Chem. 2005/09/01;77(17): 5635–5642.
77

Madsen R, Lundstedt T, Trygg J. Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta. 2010;659(1):23–33.

78

Kohl SM, Klein MS, Hochrein J, Oefner PJ, Spang R, Gronwald W. State-of-the art data normalization methods improve NMR-based metabolomic analysis. Metabolomics. 2012;8(1):146–160.

79

Liu S-Y, Zhang R-L, Kang H, Fan Z-J, Du Z. Human liver tissue metabolic profiling research on hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterology WJG. 2013;19(22):3423–3432.

80

Snow PB, Smith DS, Catalona WJ. Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study. J Urol. 1994;152(5 Pt 2):1923–1926.

81

Lehnhardt FG, Bock C, Röhn G, Ernestus RI, Hoehn M. Metabolic differences between primary and recurrent human brain tumors: a 1H NMR spectroscopic investigation. NMR Biomed. 2005;18(6):371–382.

82

Gribbestad IS, Petersen SB, Fjøsne HE, Kvinnsland S, Krane J. 1H NMR spectroscopic characterization of perchloric acid extracts from breast carcinomas and non-involved breast tissue. NMR Biomed. 1994;7(4):181–194.

83

Bylesjö M, Rantalainen M, Cloarec O, Nicholson JK, Holmes E, Trygg J. OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom. 2006;20(8-10):341–351.

84

Goodpaster AM, Romick-Rosendale LE, Kennedy MA. Statistical significance analysis of nuclear magnetic resonance-based metabonomics data. Anal Biochem. 2010;401(1):134–143.

85

Westerhuis JA, van Velzen EJ, Hoefsloot HC, Smilde AK. Multivariate paired data analysis: multilevel PLSDA versus OPLSDA. Metabolomics. 2010;6(1):119–128.

86

Molteni CG, Cazzaniga G, Condorelli DF, Fortuna CG, Biondi A, Musumarra G. Successful application of OPLS-DA for the discrimination of wild-type and mutated cells in acute lymphoblastic leukemia. QSAR Comb Sci. 2009;28(8):822–828.

87

Boccard J, Rutledge DN. A consensus orthogonal partial least squares discriminant analysis (OPLS-DA) strategy for multiblock Omics data fusion. Anal Chim Acta. 2013;769:30–39.

88

Ramadan Z, Jacobs D, Grigorov M, Kochhar S. Metabolic profiling using principal component analysis, discriminant partial least squares, and genetic algorithms. Talanta. 2006;68(5):1683–1691.

89

Worley B, Halouska S, Powers R. Utilities for quantifying separation in PCA/PLS-DA scores plots. Anal Biochem. 2013;433(2):102–104.

90

Wishart DS, Tzur D, Knox C, et al. HMDB: the human metabolome database. Nucleic acids Res. 2007;35(suppl 1):D521-D526.

91

Ulrich E, Akutsu H, Doreleijers J, et al. BioMagResBank. Nucleic Acids Res. 2008;36:D402-D408.

92

Forsythe IJ, Wishart DS. Exploring human metabolites using the human metabolome database. Curr Protoc Bioinforma. 2009:14.18.11-14.18.45.

93

Ludwig C, Ward D, Martin A, et al. Fast targeted multidimensional NMR metabolomics of colorectal cancer. Magnetic Reson Chem MRC. 2009;47:S68-S73.

94
Amiot A, Dona AC, Wijeyesekera A, et al. 1H NMR spectroscopy of fecal extracts enables detection of advanced colorectal neoplasia. J Proteome Res. 2015/09/04;14(9): 3871–3881.
95

Piotto M, Moussallieh F-M, Dillmann B, et al. Metabolic characterization of primary human colorectal cancers using high resolution magic angle spinning 1H magnetic resonance spectroscopy. Metabolomics. 2009;5.

96

Gao H, Lu Q, Liu X, et al. Application of 1H NMR-based metabonomics in the study of metabolic profiling of human hepatocellular carcinoma and liver cirrhosis. Cancer Sci. 2009;100(4):782–785.

97

Shariff MI, Gomaa AI, Cox IJ, et al. Urinary metabolic biomarkers of hepatocellular carcinoma in an Egyptian population: a validation study. J Proteome Res. 2011;10(4):1828–1836.

98

Carrola J, CuM Rocha, AnS Barros, et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res. 2010;10(1):221–230.

99

Sitter B, Lundgren S, Bathen TF, Halgunset J, Fjosne HE, Gribbestad IS. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed. 2006;19(1):30–40.

100
Jobard E, Pontoizeau C, Blaise BJ, Bachelot T, Elena-Herrmann B, Trédan O. A serum nuclear magnetic resonance-based metabolomic signature of advanced metastatic human breast cancer. Cancer Lett. 2/1/2014;343(1): 33–41.
101

Zhang L, Jin H, Guo X, et al. Distinguishing pancreatic cancer from chronic pancreatitis and healthy individuals by 1H nuclear magnetic resonance-based metabonomic profiles. Clin Biochem. 2012;45(13–14):1064–1069.

102
Jiménez B, Mirnezami R, Kinross J, et al. 1H HR-MAS NMR spectroscopy of tumor-induced local metabolic “field-effects” enables colorectal cancer staging and prognostication. J Proteome Res. 2013/02/01;12(2): 959–968.
103
Bertini I, Cacciatore S, Jensen BV, et al. Metabolomic NMR fingerprinting to identify and predict survival of patients with metastatic colorectal cancer. Cancer Res. January 1, 2012;72(1): 356–364.
104

Wang H, Wang L, Zhang H, et al. 1H NMR-based metabolic profiling of human rectal cancer tissue. Mol Cancer. 2013;12(1):1–12.

105

Piotto M, Moussallieh F-M, Dillmann B, et al. Metabolic characterization of primary human colorectal cancers using high resolution magic angle spinning 1H magnetic resonance spectroscopy. Metabolomics. 2008;5(3):292–301.

106

MuLan L, Yonghyun S, Nariya C, et al. An HR-MAS MR metabolomics study on breast tissues obtained with core needle biopsy. PLoS One. 2011;6(10):1–8.

107

Sitter B, Bathen TF, Singstad TE, et al. Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR Biomed. 2010;23(4):424–431.

108
Giskeødegård GF, Grinde MT, Sitter B, et al. Multivariate modeling and prediction of breast cancer prognostic factors using mr metabolomics. J Proteome Res. 2010/02/05;9(2):972–979.
109
Asiago VM, Alvarado LZ, Shanaiah N, et al. Early detection of recurrent breast cancer using metabolite profiling. Cancer Res. November 1, 2010;70(21): 8309–8318.
110
Carrola J, Rocha CM, Barros AS, et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res. 2011/01/07;10(1): 221–230.
111

Liu Y-F, Xu S, Gong H, Cui Y-F, Song D-D, Zhou Y-P. Partial least-squares discriminant analysis optimized by particle swarm optimization: application to 1H nuclear magnetic resonance analysis of lung cancer metabonomics. J Chemom. 2015;29(10):537–546.

112

Chen W, Zu Y, Huang Q, et al. Study on metabonomic characteristics of human lung cancer using high resolution magic-angle spinning 1H NMR spectroscopy and multivariate data analysis. Magnetic Reson Med. 2011;66(6):1531–1540.

113

Duarte IF, Rocha CM, Barros AS, et al. Can nuclear magnetic resonance (NMR) spectroscopy reveal different metabolic signatures for lung tumours? Virchows Arch. 2010;457(6):715–725.

114

Jordan KW, Adkins CB, Su L, et al. Comparison of squamous cell carcinoma and adenocarcinoma of the lung by metabolomic analysis of tissue–serum pairs. Lung Cancer. 2010;68(1):44–50.

115
Rocha CM, Barros AS, Gil AM, et al. Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J Proteome Res. 2010/01/04;9(1): 319–332.
116
Yang Y, Li C, Nie X, et al. Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR Spectroscopy in conjunction with multivariate data analysis. J Proteome Res. 2007/07/01;6(7): 2605–2614.
117
Nahon P, Amathieu R, Triba MN, et al. Identification of serum proton NMR metabolomic fingerprints associated with hepatocellular carcinoma in patients with alcoholic cirrhosis. Clin Cancer Res. December 15, 2012;18(24): 6714–6722.
118

Solinas A, Chessa M, Culeddu N, et al. High resolution-magic angle spinning (HR-MAS) NMR-based metabolomic fingerprinting of early and recurrent hepatocellular carcinoma. Metabolomics. 2013;10(4):616–626.

119
Bathe OF, Shaykhutdinov R, Kopciuk K, et al. Feasibility of Identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol Biomark Prev. January 1, 2011;20(1): 140–147.
Genes & Diseases
Pages 28-36
Cite this article:
Li T, Deng P. Nuclear Magnetic Resonance technique in tumor metabolism. Genes & Diseases, 2017, 4(1): 28-36. https://doi.org/10.1016/j.gendis.2016.12.001

246

Views

1

Downloads

16

Crossref

N/A

Web of Science

20

Scopus

0

CSCD

Altmetrics

Received: 11 September 2016
Accepted: 05 December 2016
Published: 13 December 2016
© 2016, Chongqing Medical University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return