AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (497.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The Role and Function of Ras-association domain family in Cancer: A Review

Mohammad Reza Zinatizadeha,b,1( )Seyed Ali Momenic,1Peyman Kheirandish Zarandia,bGhanbar Mahmoodi ChalbatanibHassan DanabHamid Reza MirzaeidMohammad Esmaeil AkbariaSeyed Rouhollah Mirib
Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, IR, Iran
Cancer Research Center, Shohadae Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Peer review under responsibility of Chongqing Medical University.

1 These authors contributed equally to this work.

Show Author Information

Abstract

Ras gene mutation has been observed in more than 30% of cancers, and 90% of pancreatic, lung and colon cancers. Ras proteins (K-Ras, H-Ras, N-Ras) act as molecular switches which are activated by binding to GTP. They play a role in the cascade of cell process control (proliferation and cell division). In the inactive state, transforming GTP to GDP leads to the activation of GTpase in Ras gene. However, the mutation in Ras leads to the loss of internal GTPase activity and permanent activation of the protein. The activated Ras can promote the cell death or stop cell growth, which are facilitated by Ras-association domain family. Various studies have been conducted to determine the importance of losing RASSF proteins in Ras-induced tumors. This paper examines the role of Ras and RASSF proteins. In general, RASSF proteins can be used as a suitable means for targeting a large group of Ras-induced tumors.

References

1
Azmi Asfar. Conquering RAS: From Biology to Cancer Therapy. Elsevier; 2016.
2

Zinatizadeh MR, Masoumalinejad Z, Parnak F. Prevalence of Mycoplasma hyorhinis contamination in tissues samples from cancer patients: a Brief Report. Mod Med Lab J. 2017;1(3):91-95.

3

Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11-22.

4

Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. J Cell Sci. 2007;120(18):3163-3172.

5

Overmeyer JH, Maltese WA. Death pathways triggered by activated Ras in cancer cells. Front Biosci. 2011;16(5):1693-1713.

6

Kim DH, Kim JS, Park JH, et al. Relationship of Ras association domain family 1 methylation and K-ras mutation in primary non-small cell lung cancer. Cancer Res. 2003;63(19):6206-6211.

7

Calvisi DF, Ladu S, Gorden A, et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology. 2006;130(4):1117-1128.

8

Fukatsu A, Ishiguro F, Tanaka I, et al. RASSF3 downregulation increases malignant phenotypes of non-small cell lung cancer. Lung Cancer. 2014;83(1):23-29.

9

Mezzanotte JJ, Hill VC, Schmidt ML, et al. RASSF6 exhibits promoter hypermethylation in metastatic melanoma and inhibits invasion in melanoma cells. Epigenetics. 2014;9(11):1496-1503.

10

Hamilton G, Yee KS, Scarce S, O'Neill E. ATM regulates a RASSF1A-dependent DNA damage response. Curr Biol. 2009;19(23):2020-2025.

11

Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov. 2014;13(11):828-851.

12

Guo C, Tommasi S, Liu L, Yee JK, Dammann R, Pfeifer GP. RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr Biol. 2007;17(8):700-705.

13

Khokhlatchev A, Rabizadeh S, Xavier R, et al. Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol. 2002;12(4):253-265.

14

Donninger H, Calvisi DF, Barnoud T, et al. NORE1A is a Ras senescence effector that controls the apoptotic/senescent balance of p53 via HIPK2. J Cell Biol. 2015;208(6):777-789.

15

Matallanas D, Romano D, Yee K, et al. RASSF1A elicits apoptosis through an MST2 pathway directing proapoptotic transcription by the p73 tumor suppressor protein. Mol Cell. 2007;27(6):962-975.

16

Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ. Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem. 2000;275(46):35669-35672.

17

Ortiz-Vega S, Khokhlatchev A, Nedwidek M, et al. The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Oncogene. 2002;21(9):1381-1390.

18

Land H, Parada LF, Weinberg RA. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature. 1983;304(5927):596-602.

19

Shivakumar L, Minna J, Sakamaki T, Pestell R, White MA. The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol. 2002;22(12):4309-4318.

20

Dallol A, Agathanggelou A, Fenton SL, et al. RASSF1A interacts with microtubule-associated proteins and modulates microtubule dynamics. Cancer Res. 2004;64(12):4112-4116.

21

Vos MD, Martinez A, Elam C, et al. A role for the RASSF1A tumor suppressor in the regulation of tubulin polymerization and genomic stability. Cancer Res. 2004;64(12):4244-4250.

22

Arnette C, Efimova N, Zhu X, Clark GJ, Kaverina I. Microtubule segment stabilization by RASSF1A is required for proper microtubule dynamics and Golgi integrity. Mol Biol Cell. 2014;25(6):800-810.

23

Liu L, Vo A, Liu G, McKeehan WL. Distinct structural domains within C19ORF5 support association with stabilized microtubules and mitochondrial aggregation and genome destruction. Cancer Res. 2005;65(10):4191-4201.

24

Baksh S, Tommasi S, Fenton S, et al. The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to Bax conformational change and cell death. Mol Cell. 2005;18(6):637-650.

25

Vos MD, Dallol A, Eckfeld K, et al. The RASSF1A tumor suppressor activates Bax via MOAP-1. J Biol Chem. 2006;281(18):4557-4563.

26

Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J. Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J. 2004;381(2):453-462.

27

Pan D. The hippo signaling pathway in development and cancer. Dev Cell. 2010;19(4):491-505.

28

Harvey KF, Zhang X, Thomas DM. The Hippo pathway and human cancer. Nat Rev Cancer. 2013;13(4):246-257.

29

Del Re DP, Matsuda T, Zhai P, et al. Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice. J Clin Investig. 2010;120(10):3555-3567.

30

Romano D, Matallanas D, Weitsman G, Preisinger C, Ng T, Kolch W. Proapoptotic kinase MST2 coordinates signaling crosstalk between RASSF1A, Raf-1, and Akt. Cancer Res. 2010;70(3):1195-1203.

31

Song MS, Song SJ, Kim SY, Oh HJ, Lim DS. The tumour suppressor RASSF1A promotes MDM2 self-ubiquitination by disrupting the MDM2-DAXX-HAUSP complex. EMBO J. 2008;27(13):1863-1874.

32

Tommasi S, Besaratinia A, Wilczynski SP, Pfeifer GP. Loss of RASSF1A enhances p53-mediated tumor predisposition and accelerates progression to aneuploidy. Oncogene. 2011;30(6):690-700.

33

Pefani DE, Latusek R, Pires I, et al. RASSF1A-LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2. Nat Cell Biol. 2014;16(10):962-971.

34

Yee KS, Grochola L, Hamilton G, et al. A RASSF1A polymorphism restricts p53/p73 activation and associates with poor survival and accelerated age of onset of soft tissue sarcoma. Cancer Res. 2012;72(9):2206-2217.

35

Donninger H, Clark J, Rinaldo F, et al. The RASSF1A tumor suppressor regulates XPA-mediated DNA repair. Mol Cell Biol. 2015;35(1):277-287.

36

Gao B, Xie XJ, Huang C, et al. RASSF1A polymorphism A133S is associated with early onset breast cancer in BRCA1/2 mutation carriers. Cancer Res. 2008;68(1):22-25.

37

Schagdarsurengin U, Seidel C, Ulbrich EJ, Kolbl H, Dittmer J, Dammann R. A polymorphism at codon 133 of the tumor suppressor RASSF1A is associated with tumorous alteration of the breast. Int J Oncol. 2005;27(1):185-191.

38

Oceandy D, Pickard A, Prehar S, et al. Tumor suppressor Ras-association domain family 1 isoform A is a novel regulator of cardiac hypertrophy. Circulation. 2009;120(7):607-616.

39

Jung HY, Jung JS, Whang YM, Kim YH. RASSF1A suppresses cell migration through inactivation of HDAC6 and increase of acetylated alpha-tubulin. Cancer Res Treat. 2013;45(2):134-144.

40

Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 2000;19(6):1176-1179.

41

Tommasi S, Dammann R, Zhang Z, et al. Tumor susceptibility of RASSF1A knockout mice. Cancer Res. 2005;65(1):92-98.

42

Ram RR, Mendiratta S, Bodemann BO, Torres MJ, Eskiocak U, White MA. RASSF1A inactivation unleashes a tumor suppressor/oncogene cascade with context-dependent consequences on cell cycle progression. Mol Cell Biol. 2014;34(12):2350-2358.

43

Kitagawa D, Kajiho H, Negishi T, et al. Release of RASSF1C from the nucleus by Daxx degradation links DNA damage and SAPK/JNK activation. EMBO J. 2006;25(14):3286-3297.

44

Lorenzato A, Martino C, Dani N, et al. The cellular apoptosis susceptibility CAS/CSE1L gene protects ovarian cancer cells from death by suppressing RASSF1C. FASEB J. 2012;26(6):2446-2456.

45

Estrabaud E, Lassot I, Blot G, et al. RASSF1C, an isoform of the tumor suppressor RASSF1A, promotes the accumulation of beta-catenin by interacting with betaTrCP. Cancer Res. 2007;67(3):1054-1061.

46

Vavvas D, Li X, Avruch J, Zhang XF. Identification of Nore1 as a potential ras effector. J Biol Chem. 1998;273(10):5439-5442.

47

Wohlgemuth S, Kiel C, Kramer A, Serrano L, Wittinghofer F, Herrmann C. Recognizing and defining true Ras binding domains I: biochemical analysis. J Mol Biol. 2005;348(3):741-758.

48

Kuznetsov S, Khokhlatchev AV. The growth and tumor suppressors NORE1A and RASSF1A are targets for calpain-mediated proteolysis. PLoS One. 2008;3(12):e3997.

49

Chen J, Liu WO, Vos MD, et al. The t(1;3) breakpoint-spanning genes LSAMP and NORE1 are involved in clear cell renal cell carcinomas. Cancer Cell. 2003;4(5):405-413.

50

Aoyama Y, Avruch J, Zhang XF. Nore1 inhibits tumor cell growth independent of Ras or the MST1/2 kinases. Oncogene. 2004;23(19):3426-3433.

51

Calvisi DF, Donninger H, Vos MD, et al. NORE1A tumor suppressor candidate modulates p21CIP1 via p53. Cancer Res. 2009;69(11):4629-4637.

52

Puca R, Nardinocchi L, Givol D, D'Orazi G. Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells. Oncogene. 2010;29(31):4378-4387.

53

Lee D, Park SJ, Sung KS, et al. MDM2 associates with Ras effector NORE1 to induce the degradation of oncoprotein HIPK1. EMBO Rep. 2012;13(2):163-169.

54

Schmidt ML, Donninger H, Clark GJ. Ras regulates SCF(beta-TrCP) protein activity and specificity via its effector protein NORE1A. J Biol Chem. 2014;289(45):31102-31110.

55

Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW. Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem. 1997;272(40):24735-24738.

56

Park J, Kang SI, Lee SY, et al. Tumor suppressor ras association domain family 5 (RASSF5/NORE1) mediates death receptor ligand-induced apoptosis. J Biol Chem. 2010;285(45):35029-35038.

57

Katagiri K, Ohnishi N, Kabashima K, et al. Crucial functions of the Rap1 effector molecule RAPL in lymphocyte and dendritic cell trafficking. Nat Immunol. 2004;5(10):1045-1051.

58

Zhou D, Medoff BD, Chen L, et al. The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naive T cells. Proc Natl Acad Sci USA. 2008;105(51):20321-20326.

59

Ishiguro K, Avruch J, Landry A, et al. Nore1B regulates TCR signaling via ras and Carma1. Cell Signal. 2006;18(10):1647-1654.

60

Miertzschke M, Stanley P, Bunney TD, Rodrigues-Lima F, Hogg N, Katan M. Characterization of interactions of adapter protein RAPL/Nore1B with RAP GTPases and their role in T cell migration. J Biol Chem. 2007;282(42):30629-30642.

61

Macheiner D, Heller G, Kappel S, et al. NORE1B, a candidate tumor suppressor, is epigenetically silenced in human hepatocellular carcinoma. J Hepatol. 2006;45(1):81-89.

62

Macheiner D, Gauglhofer C, Rodgarkia-Dara C, et al. NORE1B is a putative tumor suppressor in hepatocarcinogenesis and may act via RASSF1A. Cancer Res. 2009;69(1):235-242.

63

Vos MD, Ellis CA, Elam C, Ulku AS, Taylor BJ, Clark GJ. RASSF2 is a novel K-Ras-specific effector and potential tumor suppressor. J Biol Chem. 2003;278(30):28045-28051.

64

Akino K, Toyota M, Suzuki H, et al. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer. Gastroenterology. 2005;129(1):156-169.

65

Donninger H, Hesson L, Vos M, et al. The Ras effector RASSF2 controls the PAR-4 tumor suppressor. Mol Cell Biol. 2010;30(11):2608-2620.

66

Payne SR, Serth J, Schostak M, et al. DNA methylation biomarkers of prostate cancer: confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. The Prostate. 2009;69(12):1257-1269.

67

Perez-Janices N, Blanco-Lugin I, Tunon MT, et al. EPB41L3, TSP-1 and RASSF2 as new clinically relevant prognostic biomarkers in diffuse gliomas. Oncotarget. 2015;6(1):368-380.

68

Song H, Oh S, Oh HJ, Lim DS. Role of the tumor suppressor RASSF2 in regulation of MST1 kinase activity. Biochem Biophys Res Commun. 2010;391(1):969-973.

69

Cooper WN, Hesson LB, Matallanas D, et al. RASSF2 associates with and stabilizes the proapoptotic kinase MST2. Oncogene. 2009;28(33):2988-2998.

70

Imai T, Toyota M, Suzuki H, et al. Epigenetic inactivation of RASSF2 in oral squamous cell carcinoma. Cancer Sci. 2008;99(5):958-966.

71

Burghel GJ, Lin WY, Whitehouse H, et al. Identification of candidate driver genes in common focal chromosomal aberrations of microsatellite stable colorectal cancer. PLoS One. 2013;8(12):e83859.

72

Safavi S, Hansson M, Karlsson K, Bilogalv A, Johansson B, Paulsson K. Novel gene targets detected by genomic profiling in a consecutive series of 126 adults with acute lymphoblastic leukemia. Haematologica. 2015;100(1):55-61.

73

Guo H, Liu H, Wei J, et al. Functional single nucleotide polymorphisms of the RASSF3 gene and susceptibility to squamous cell carcinoma of the head and neck. Eur J Cancer. 2014;50(3):582-592.

74

Peng H, Liu H, Zhao S, Wu J, Fan J, Liao J. Silencing of RASSF3 by DNA hypermethylation is associated with tumorigenesis in somatotroph adenomas. PLoS One. 2013;8(3):e59024.

75

Kudo T, Ikeda M, Nishikawa M, et al. The RASSF3 candidate tumor suppressor induces apoptosis and G1-S cell-cycle arrest via p53. Cancer Res. 2012;72(11):2901-2911.

76

Eckfeld K, Hesson L, Vos MD, Bieche I, Latif F, Clark GJ. RASSF4/AD037 is a potential ras effector/tumor suppressor of the RASSF family. Cancer Res. 2004;64(23):8688-8693.

77

Chow LS, Lo KW, Kwong J, Wong AY, Huang DP. Aberrant methylation of RASSF4/AD037 in nasopharyngeal carcinoma. Oncol Rep. 2004;12(4):781-787.

78

Michifuri Y, Hirohashi Y, Torigoe T, et al. Small proline-rich protein-1B is overexpressed in human oral squamous cell cancer stem-like cells and is related to their growth through activation of MAP kinase signal. Biochem Biophys Res Commun. 2013;439(1):96-102.

79

Crose LE, Galindo KA, Kephart JG, et al. Alveolar rhabdomyosarcoma-associated PAX3-FOXO1 promotes tumorigenesis via Hippo pathway suppression. J Clin Investig. 2014;124(1):285-296.

80

Allen NP, Donninger H, Vos MD, et al. RASSF6 is a novel member of the RASSF family of tumor suppressors. Oncogene. 2007;26(42):6203-6211.

81

Ikeda M, Hirabayashi S, Fujiwara N, et al. Ras-association domain family protein 6 induces apoptosis via both caspase-dependent and caspase-independent pathways. Exp Cell Res. 2007;313(7):1484-1495.

82

Keramatinia A, Ahadi A, Akbari ME, et al. Genomic profiling of chronic myelogenous leukemia: basic and clinical approach. J Cancer Prev. 2017;22(2):74-81.

83

Taghavi A, Akbari ME, Hashemi-Bahremani M, et al. Gene expression profiling of the 8q22-24 position in human breast cancer: TSPYL5, MTDH, ATAD2 and CCNE2 genes are implicated in oncogenesis, while WISP1 and EXT1 genes may predict a risk of metastasis. Oncol Lett. 2016;12(5):3845-3855.

84

Nooshinfar E, Bashash D, Abbasalizadeh M, Safaroghli-Azar A, Sadreazami P, Akbari ME. The molecular mechanisms of tobacco in cancer pathogenesis. Iran J Cancer Prev. 2017;10(1):e7902.

Genes & Diseases
Pages 378-384
Cite this article:
Zinatizadeh MR, Momeni SA, Zarandi PK, et al. The Role and Function of Ras-association domain family in Cancer: A Review. Genes & Diseases, 2019, 6(4): 378-384. https://doi.org/10.1016/j.gendis.2019.07.008

323

Views

3

Downloads

49

Crossref

N/A

Web of Science

48

Scopus

0

CSCD

Altmetrics

Received: 14 April 2019
Revised: 16 July 2019
Accepted: 18 July 2019
Published: 27 July 2019
© 2019, Chongqing Medical University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return