AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (433.4 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Allotopic expression of mitochondrial genes: Basic strategy and progress

Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Darmaga Campus, Bogor 16680, Indonesia
Eijkman Institute for Molecular Biology, Jalan Diponegoro 69, Jakarta, 10430, Indonesia

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

Allotopic expression of mitochondrial genes is a deliberate functional relocation of mitochondrial genes into the nucleus followed by import of the gene-encoded polypeptide from the cytoplasm into the mitochondria. For successful allotopic expression of a mitochondrial gene, several key aspects must be considered. These include the different codon dictionary used by the mitochondrial and nuclear genomes, different codon preferences between mitochondrial and nuclear-cytosolic translation systems, and the provision of an import signal to ensure that the newly translated protein in the cytosol is successfully imported into mitochondria. The allotopic expression strategy was first developed in yeast, a useful model organism for studying human and other eukaryotic cells. Currently, a number of mitochondrial genes have been successfully recoded and nuclearly expressed in yeast and human cells. In addition to its use in evolutionary and molecular biology studies, the allotopic expression strategy has been developed as a potential approach to treat mitochondrial genetic disorders. Substantial progress has been recently achieved, and the development of this technique for therapy of the mitochondrial disease Leber's hereditary optic neuropathy (LHON) has entered phase III clinical trials. However, a number of challenges remain to be overcome to accelerate the successful application of this technique. These include improvement of nuclear gene expression, import into mitochondria, processing, and functional integration of the allotopically expressed polypeptides into mitochondrial protein complexes. This review discusses the current basic strategy, progress, challenges, and prospects of the allotopic expression strategy for mitochondrial genes.

References

1

Bietenhader M, Martos A, Tetaud E, et al. Experimental relocation of the mitochondrial ATP9 gene to the nucleus reveals forces underlying mitochondrial genome evolution. PLoS Genet. 2012;8(8):e1002876.https://doi.org/10.1371/journal.pgen.1002876.

2

Wang X. Integrate the mitochondrial genome into the nuclear genome. Bioenerg Open Access. 2012;1(2):1-3.

3

Chin RM, Panavas T, Brown JM, Johnson KK. Optimized mitochondrial targeting of proteins encoded by modified mRNAs rescues cells harboring mutations in mtATP6. Cell Rep. 2018;22(11):2818-2826.

4

Nagley P, Devenish RJ. Leading organellar protein along new pathways: the relocation of mitochondrial and chloroplast genes to the nucleus. Trends Biochem Sci. 1989;14(1):31-35.

5

Gearing DP, McMullen GL, Nagley P. Chemical synthesis of a mitochondrial gene designed for expression in the yeast nucleus. Biochem Int. 1985;10(6):907-915.

6

Boominathan A, Vanhoozer S, Basisty N, et al. Stable nuclear expression of ATP8 and ATP6 genes rescues a mtDNA Complex V null mutant. Nucleic Acids Res. 2016;44(19):9342-9357.

7

Kaltimbacher V, Bonnet C, Lecoeuvre G, Forster V, Sahel J, Corral-Debrinski M. mRNA localization to the mitochondrial surface allows the efficient translocation inside the organelle of a nuclear recoded ATP6 protein. RNA. 2006;12(7):1408-1417.

8

Wiedemann N, Pfanner N. Mitochondrial machineries for protein import and assembly. Annu Rev Biochem. 2017;86:685-714.

9

Sokol AM, Sztolsztener ME, Wasilewski M, Heinz E, Chacinska A. Mitochondrial protein translocases for survival and wellbeing. FEBS Lett. 2014;588:2484-2495.

10

Cheng MY, Harlt F, Martin J, et al. Mitochondrial heat-shock protein hsp60 is essential for assembly of protein imported into yeast mitochondria. Nature. 1989;337(6208):620-625.

11

Ting SY, Schilke BA, Hayashi M, Craig EA. Architecture of the TIM23 inner mitochondrial translocon and interactions with the matrix import motor. J Biol Chem. 2014;289(41):28689-28696.

12

Craig EA. Hsp70 at the membrane: driving protein translocation. BMC Biol. 2018;16:1-11.

13

Rubalcava-Gracia D, Vázquez-Acevedo M, Funes S, Pérez-Martínez X, González-Halphen D. Mitochondrial versus nuclear gene expression and membrane protein assembly: the case of subunit 2 of yeast cytochrome c oxidase. Mol Biol Cell. 2018;29(7):820-833.

14

Gearing DP, Nagley P. Yeast mitochondrial ATPase subunit 8, normally a mitochondrial gene product, expressed in vitro and imported back into the organelle. EMBO J. 1986;5(13):3651-3655.

15

Nagley P, Farrell LB, Gearing DP, Nero D, Meltzer S, Devenish RJ. Assembly of functional proton-translocating ATPase complex in yeast mitochondria with cytoplasmically synthesised subunit 8, a polypeptide normally encoded within the organelle. Proc Natl Acad Sci USA. 1988;85(7):2091-2095.

16

Sylvestre J, Margeot A, Jacq C, Dujardin G, Corral-Debrinski M. The role of the 3' untranslated region in mRNA sorting to the vicinity of mitochondria is conserved from yeast to human cells. Mol Biol Cell. 2003;14(9):3848-3856.

17

Bonnet C, Kaltimbacher V, Ellouze S, et al. Allotopic mRNA localization to the mitochondrial surface rescues respiratory chain defects in fibroblasts harboring mitochondrial DNA mutations affecting complex I or V subunits. Rejuvenation Res. 2007;10(2):127-144.

18

Galanis M, Devenis RJ, Nagley P. Duplication of leader sequence for protein targeting to mitochondria leads to increased import efficiency. FEBS Lett. 1991;282(2):425-430.

19

Galanis M, Law RHP, O'Keefe LM, Devenish RJ, Nagley P. Aberrant mitochondrial processing of chimaeric import precursors containing subunits 8 and 9 of yeast mitochondrial ATP synthase. Biochem Int. 1990;22(6):1059-1066.

20

Daley DO, Clifton R, Whelan J. Intracellular gene transfer: reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase. Proc Natl Acad Sci USA. 2002;99(16):10510-10515.

21

Supekova L, Supek F, Greera JE, Schultz PG. A single mutation in the first transmembrane domain of yeast COX2 enables its allotopic expression. Proc Natl Acad Sci USA. 2010;107(11):5047-5052.

22

Gray RE, Law RHP, Devenish RJ, Nagley P. Allotopic expression of mitochondrial ATP synthase genes in nucleus of Saccharomyces cerevisiae. Methods Enzymol. 1996;264:369-389.

23

Roucou X, Artika IM, Devenish RJ, Nagley P. Bioenergetic and structural consequences of allotopic expression of subunit 8 of yeast mitochondrial ATP synthase: the hydrophobic character of residues 23 and 24 is essential for maximal activity and structural stability of the enzyme complex. Eur J Biochem. 1999;261(2):444-451.

24

Stephens AN, Roucou X, Artika IM, Devenish RJ, Nagley P. Topology and proximity relationships of yeast mitochondrial ATP synthase subunit 8 determined by unique introduced cysteine residues. Eur J Biochem. 2000;267(21):6443-6451.

25

Artika IM. Allotopic expression of a gene encoding FLAG tagged-subunit 8 of yeast mitochondrial ATP synthase. Hayati J Biosci. 2006;13(1):36-38.

26

Artika IM. Membrane topology of subunit 8 variant of yeast Saccharomyces cerevisiae mitochondrial ATP synthase. Microbiol Indones. 2009;3(1):37-41.

27

Straffon AFL, Prescott M, Nagley P, Devenish RJ. Rescue of yeast defective in mitochondrial ATP synthase subunit 8 by a heterologous gene from Aspergillus nidulans. Biochem Biophys Res Commun. 1994;203(3):1567-1573.

28

Artika IM. Development of dual control allotopic expression system for subunit8 of Yeast Saccharomyces cerevisiae Mitochondrial ATP Synthase. Hayati J Biosci. 2011;18(3):103-107.

29

Banroques J, Delahodde A, Jacq C. A mitochondrial RNA maturase gene transferred to the yeast nucleus can control mitochondrial mRNA splicing. Cell. 1986;46(6):837-844.

30

Oca-Cossio J, Kenyon L, Hao H, Moraes CT. Limitations of allotropic expression of mitochondrial genes in mammalian cells. Genetics. 2003;165(2):707-720.

31

Perales-Clemente E, Fernández-Silva P, Acín-Pérez R, Pérez-Martos A, Enríquez JA. Allotopic expression of mitochondrial encoded genes in mammals: achieved goals, undemonstrated mechanism or impossible task? Nucleic Acids Res. 2011;39(1):225-234.https://doi.org/10.1093/nar/gkq769.

32

Manfredi G, Fu J, Ojaimi J, et al. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet. 2002;30(4):394-399. https://doi.org/10.1038/ng851.

33

Bonnet C, Agustin S, Ellouze S, et al. The optimized allotopic expression of ND1 or ND4 genes restores respiratory chain complex I activity in fibroblasts harbouring mutations in these genes. Biochim Biophys Acta. 2008;1783(10):1707-1717.

34

Guy J, Qi X, Pallotti F, et al. Rescue of a mitochondrial deficiency causing leber hereditary optic neuropathy. Ann Neurol. 2002;52(5):534-542.

35

Ellouze S, Augustin S, Bouaita A, et al. Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am J Hum Genet. 2008;83(3):373-387. https://doi.org/10.1016/j.ajhg.2008.08.013.

36

Cwerman-Thibault H, Augustin S, Lechauve C, et al. Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss. Mol TherMethods Clin Dev. 2015;2:1-15.

37

Chinnery P. New approaches to the treatment of mitochondrial disorders. Reprod Biomed Online. 2003;8(1):16-23.

38

Sudoyo H, Suryadi H, Pramoonjago PLP, Lyrawati D, Marzuki S. Asian-specific mtDNA backgrounds associated with the primary G11778A mutation of Leber's hereditary optic neuropathy. J Hum Genet. 2002;47(11):594-604.

39

Kirches E. LHON: mitochondrial mutations and more. Curr Genom. 2011;12(1):44-54.

40

Jonckheere AI, Hogeveen M, Nijtmans LGJ, et al. A novel mitochondrial ATP8 gene mutation in a patient with apical hypertrophic cardiomyopathy and neuropathy. J Med Genet. 2008;45(3):129-133.

41

González-Halphen D, Funes S, Pèrez-Matínez X, et al. Genetic correction of mitochondrial diseases: using the natural migration of mitochondrial genes to the nucleus in chlorophyte algae as a model system. Ann NY Acad Sci. 2004;1019:232-239.

Genes & Diseases
Pages 578-584
Cite this article:
Artika IM. Allotopic expression of mitochondrial genes: Basic strategy and progress. Genes & Diseases, 2020, 7(4): 578-584. https://doi.org/10.1016/j.gendis.2019.08.001

305

Views

7

Downloads

21

Crossref

N/A

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 16 April 2019
Revised: 23 July 2019
Accepted: 01 August 2019
Published: 31 August 2019
© 2019, Chongqing Medical University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return