AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases

Mohammad Reza Zinatizadeha,,( )Bettina Schockb,,Ghanbar Mahmoodi Chalbatanic,dPeyman Kheirandish ZarandiaSeyed Amir JalalieSeyed Rouhollah Mirid,( )
Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1336616357, Iran
Centre for Experimental Medicine, Queen’s University Belfast, Belfast, BT7 1NN, United Kingdom
Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1336616357, Iran
Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, 1336616357, Iran
Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1336616357, Iran

These authors contributed equally to this study.]]>

Show Author Information

Abstract

The nuclear factor kappa B (NF-kB) family of transcription factors plays an essential role as stressors in the cellular environment, and controls the expression of important regulatory genes such as immunity, inflammation, death, and cell proliferation. NF-kB protein is located in the cytoplasm, and can be activated by various cellular stimuli. There are two pathways for NF-kB activation, as the canonical and non-canonical pathways, which require complex molecular interactions with adapter proteins and phosphorylation and ubiquitinase enzymes. Accordingly, this increases NF-kB translocation in the nucleus and regulates gene expression. In this study, the concepts that emerge in different cellular systems allow the design of NF-kB function in humans. This would not only allow the development for rare diseases associated with NF-kB, but would also be used as a source of useful information to eliminate widespread consequences such as cancer or inflammatory/immune diseases.

References

1

Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu Rev Immunol. 2000;18(1): 621-663.

2

Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell. 2008;132(3): 344-362.

3
Courtois G, Pescatore A, Gautheron J, Fusco F, Ursini MV, Senegas A. NF-kB-Related Genetic Diseases. Springer; 2015.
4

Walker WH, Stein B, Ganchi PA, et al. The v-rel oncogene: insights into the mechanism of transcriptional activation, repression, and transformation. J Virol. 1992;66(8):5018–5029.

5

Frederiksen AL, Larsen MJ, Brusgaard K, et al. Neonatal high bone mass with first mutation of the NF-κB complex: heterozygous de novo missense (p.Asp512Ser) RELA (Rela/p65). J Bone Miner Res. 2016;31(1):163–172.

6

Hoffmann A, Leung TH, Baltimore D. Genetic analysis of NF-κB/Rel transcription factors defines functional specificities. EMBO J. 2003;22(20):5530–5539.

7

Tsui R, Kearns JD, Lynch C, et al. IκBβ enhances the generation of the low-affinity NFκB/RelA homodimer. Nat Commun. 2015;6(1):1–10.

8

Fliegauf M, Bryant VL, Frede N, et al. Haploinsufficiency of the NF-κB1 subunit p50 in common variable immunodeficiency. Am J Hum Genet. 2015;97(3):389–403.

9

Finck A, Van der Meer JW, Schäffer AA, et al. Linkage of autosomal-dominant common variable immunodeficiency to chromosome 4q. Eur J Hum Genet. 2006;14(7):867–875.

10

Oberle EJ, Verbsky JW, Routes J, et al. A172: metaphyseal chondrodysplasia, ectodermal dysplasia, short stature, hypergammaglobulinemia, and spontaneous inflammation without infections in an extended family due to mutation in NFKB1A. Arthritis Rheumatol. 2014;66(S3):S224–S225.

11

Giuliani C, Bucci I, Napolitano G. The role of the transcription factor Nuclear Factor-kappa B in thyroid autoimmunity and cancer. Front Endocrinol. 2018;9, e471.

12

Seok J, Warren HS, Cuenca AG, et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2013;110(9):3507–3512.

13

Takao K, Miyakawa T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc Natl Acad Sci USA. 2015;112(4):1167–1172.

14

Warren HS, Tompkins RG, Moldawer LL, et al. Mice are not men. Proc Natl Acad Sci USA. 2015;112(4), e345.

15

Nathan C. Points of control in inflammation. Nature. 2002;420(6917):846–852.

16

Shay T, Lederer JA, Benoist C. Genomic responses to inflammation in mouse models mimic humans: we concur, apples to oranges comparisons won’t do. Proc Natl Acad Sci USA. 2015;112(4), e346.

17

Lawrence T, Fong C. The resolution of inflammation: anti-inflammatory roles for NF-κB. Int J Biochem Cell Biol. 2010;42(4):519–523.

18

Takao K, Hagihara H, Miyakawa T. Reply to Warren et al. and Shay et al.: commonalities across species do exist and are potentially important. Proc Natl Acad Sci USA. 2015;112(4):E347–E348.

19

, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20(1):197–216.

20
Mak TW, Saunders ME. The Immune Response: Basic and Clinical Principles. Elsevier; 2006.
21

Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327(5963):291–295.

22

Ledoux AC, Perkins ND. NF-κB and the cell cycle. Biochem Soc Trans. 2014;42(1):76–81.

23

Zinatizadeh MR, Momeni SA, Zarandi PK, et al. The role and function of Ras-association domain family in cancer: a review. Genes Dis. 2019;6(4):378–384.

24

Karin M. Nuclear factor-κB in cancer development and progression. Nature. 2006;441(7092):431–436.

25

Mattson MP, Meffert MK. Roles for NF-κB in nerve cell survival, plasticity, and disease. Cell Death Differ. 2006;13(5):852–860.

26

Dresselhaus EC, Meffert MK. Cellular specificity of NF-κB function in the nervous system. Front Immunol. 2019;10:1043.

27

Beg AA, Sha WC, Bronson RT, Baltimore D. Constitutive NF-κB activation, enhanced granulopoiesis, and neonatal lethality in IκBα-deficient mice. Genes Dev. 1995;9(22):2736–2746.

28

Klement JF, Rice NR, Car BD, et al. IκBα deficiency results in a sustained NF-κB response and severe widespread dermatitis in mice. Mol Cell Biol. 1996;16(5):2341–2349.

29

Page A, Navarro M, Garín M, et al. IKKβ leads to an inflammatory skin disease resembling interface dermatitis. J Investig Dermatol. 2010;130(6):1598–1610.

30

Hinz M, Scheidereit C. The IκB kinase complex in NF-κB regulation and beyond. EMBO Rep. 2014;15(1):46–61.

31

Lahtela J, Nousiainen HO, Stefanovic V, et al. Mutant CHUK and severe fetal encasement malformation. N Engl J Med. 2010;363(17):1631–1637.

32

Zhu Mingzhao, Chin Robert K, Christiansen Peter A, et al. NF-κB2 is required for the establishment of central tolerance through an Aire-dependent pathway. J Clin Investig. 2006;116(11):2964–2971.

33

Leslie EJ, O’Sullivan J, Cunningham ML, et al. Expanding the genetic and phenotypic spectrum of popliteal pterygium disorders. Am J Med Genet A. 2015;167A(3):545–552.

34

Sakurai H. Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci. 2012;33(10):522–530.

35

Sil AK, Maeda S, Sano Y, Roop DR, Karin M. IκB kinase-α acts in the epidermis to control skeletal and craniofacial morphogenesis. Nature. 2004;428(6983):660–664.

36

Hu Y, Baud V, Oga T, Kim KI, Yoshida K, Karin M. IKKα controls formation of the epidermis independently of NF-κB. Nature. 2001;410(6829):710–714.

37

Bartsocas CS, Papas CV. Popliteal pterygium syndrome. Evidence for a severe autosomal recessive form. J Med Genet. 1972;9(2):222–226.

38

Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature. 2001;412(6844):346–351.

39

Pannicke U, Baumann B, Fuchs S, et al. Deficiency of innate and acquired immunity caused by an IKBKB mutation. N Engl J Med. 2013;369(26):2504–2514.

40

Burns SO, Plagnol V, Gutierrez BM, et al. Immunodeficiency and disseminated mycobacterial infection associated with homozygous nonsense mutation of IKKβ. J Allergy Clin Immunol. 2014;134(1):215–218.

41

Mousallem T, Yang J, Urban TJ, et al. A nonsense mutation in IKBKB causes combined immunodeficiency. Blood. 2014;124(13):2046–2050.

42

Nielsen C, Jakobsen MA, Larsen MJ, et al. Immunodeficiency associated with a nonsense mutation of IKBKB. J Clin Immunol. 2014;34(8):916–921.

43

Zinatizadeh MR, Masoumalinejad Z, Nejatizadeh A, Shekari M, Parnak F, Zaree F. A review of NEMO protein and its relationship with genetic diseases. J Genet Genome Res. 2018;5(1):33.

44

Laplantine E, Fontan E, Chiaravalli J, et al. NEMO specifically recognizes K63-linked poly-ubiquitin chains through a new bipartite ubiquitin-binding domain. EMBO J. 2009;28(19):2885–2895.

45

Courtois G, Fauvarque MO. The many roles of ubiquitin in NF-κB signaling. Biomedicines. 2018;6(2), e43.

46

Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. 2004;1695(1–3):55–72.

47

Hurley JH, Lee S, Prag G. Ubiquitin-binding domains. Biochem J. 2006;399(3):361–372.

48

Kirisako T, Kamei K, Murata S, et al. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 2006;25(20):4877–4887.

49

Sasaki K, Iwai K. Roles of linear ubiquitinylation, a crucial regulator of NF-κB and cell death, in the immune system. Immunol Rev. 2015;266(1):175–189.

50

Shimizu Y, Taraborrelli L, Walczak H. Linear ubiquitination in immunity. Immunol Rev. 2015;266(1):190–207.

51

Boisson B, Laplantine E, Prando C, et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat Immunol. 2012;13(12):1178–1186.

52

Douglas T, Champagne C, Morizot A, Lapointe JM, Saleh M. The inflammatory caspases-1 and -11 mediate the pathogenesis of dermatitis in sharpin-deficient mice. J Immunol. 2015;195(5):2365–2373.

53

Nilsson J, Schoser B, Laforet P, et al. Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1. Ann Neurol. 2013;74(6):914–919.

54

Wang K, Kim C, Bradfield J, et al. Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement. Genome Med. 2013;5(7), e67.

55

Boisson B, Laplantine E, Dobbs K, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J Exp Med. 2015;212(6):939–951.

56

Hadian K, Griesbach RA, Dornauer S, et al. NF-κB essential modulator (NEMO) interaction with linear and lys-63 ubiquitin chains contributes to NF-κB activation. J Biol Chem. 2011;286(29):26107–26117.

57

Sato Y, Yoshikawa A, Yamashita M, Yamagata A, Fukai S. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3. EMBO J. 2009;28(24):3903–3909.

58

Kulathu Y, Akutsu M, Bremm A, Hofmann K, Komander D. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain. Nat Struct Mol Biol. 2009;16(12):1328–1330.

59

Silke J. The regulation of TNF signalling: what a tangled web we weave. Curr Opin Immunol. 2011;23(5):620–626.

60

Walczak H. TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol Rev. 2011;244(1):9–28.

61

Das T, Chen Z, Hendriks RW, Kool M. A20/Tumor necrosis factor α-induced protein 3 in immune cells controls development of autoinflammation and autoimmunity: lessons from mouse models. Front Immunol. 2018(9), e104.

62

Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature. 2003;424(6950):793–796.

63

Brummelkamp TR, Nijman SM, Dirac AM, Bernards R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature. 2003;424(6950):797–801.

64

Kovalenko A, Chable-Bessia C, Cantarella G, Israël A, Wallach D, Courtois G. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature. 2003;424(6950):801–805.

65

Mahul-Mellier AL, Pazarentzos E, Datler C, et al. De-ubiquitinating protease USP2a targets RIP1 and TRAF2 to mediate cell death by TNF. Cell Death Differ. 2012;19(5):891–899.

66

Keusekotten K, Elliott PR, Glockner L, et al. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell. 2013;153(6):1312–1326.

67

Fiil BK, Damgaard RB, Wagner SA, et al. OTULIN restricts Met1-linked ubiquitination to control innate immune signaling. Mol Cell. 2013;50(6):818–830.

68

Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114(2):181–190.

69

De Almagro MC, Vucic D. Necroptosis: pathway diversity and characteristics. Semin Cell Dev Biol. 2015;39:56–62.

70

Cai Z, Jitkaew S, Zhao J, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol. 2014;16(1):55–65.

71

Chen X, Li W, Ren J, et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 2014;24(1):105–121.

72

Narayanan KB, Park HH. Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis. 2015;20(2):196–209.

73

Wisniewski SA, Trzeciak WH. A rare heterozygous TRAF6 variant is associated with hypohidrotic ectodermal dysplasia. Br J Dermatol. 2012;166(6):1353–1356.

74

Fujikawa H, Farooq M, Fujimoto A, Ito M, Shimomura Y. Functional studies for the TRAF6 mutation associated with hypohidrotic ectodermal dysplasia. Br J Dermatol. 2013;168(3):629–633.

75

Ye H, Arron JR, Lamothe B, et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature. 2002;418(6896):443–447.

76

Xu M, Skaug B, Zeng W, Chen ZJ. A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFα and IL-1β. Mol Cell. 2009;36(2):302–314.

77

Tokunaga F, Sakata S, Saeki Y, et al. Involvement of linear polyubiquitylation of NEMO in NF-κB activation. Nat Cell Biol. 2009;11(2):123–132.

78

Tarantino N, Tinevez JY, Crowell EF, et al. TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures. J Cell Biol. 2014;204(2):231–245.

79

Paul S, Schaefer BC. A new look at T cell receptor signaling to nuclear factor-κB. Trends Immunol. 2013;34(6):269–281.

80

Niemann CU, Wiestner A. B-cell receptor signaling as a driver of lymphoma development and evolution. Semin Cancer Biol. 2013;23(6):410–421.

81

Coudronniere N, Villalba M, Englund N, Altman A. NF-κB activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-theta. Proc Natl Acad Sci USA. 2000;97(7):3394–3399.

82

Saijo K, Mecklenbräuker I, Santana A, Leitger M, Schmedt C, Tarakhovsky A. Protein kinase C beta controls nuclear factor κB activation in B cells through selective regulation of the IκB kinase α. J Exp Med. 2002;195(12):1647–1652.

83

Thome M, Charton JE, Pelzer C, Hailfinger S. Antigen receptor signaling to NF-κB via CARMA1, BCL10, and MALT1. Cold Spring Harb Perspect Biol. 2010;2(9):a003004.

84

Naito A, Yoshida H, Nishioka E, et al. TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA. 2002;99(13):8766–8771.

85

Sun SC. Non-canonical NF-κB signaling pathway. Cell Res. 2011;21(1):71–85.

86

Razani B, Reichardt AD, Cheng G. Non-canonical NF-κB signaling activation and regulation: principles and perspectives. Immunol Rev. 2011;244(1):44–54.

87

Willmann KL, Klaver S, Doğu F, et al. Biallelic loss-of-function mutation in NIK causes a primary immunodeficiency with multifaceted aberrant lymphoid immunity. Nat Commun. 2014;5(1):1–13.

88

Zarnegar BJ, Wang Y, Mahoney DJ, et al. Noncanonical NF-κB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol. 2008;9(12):1371–1378.

89

Sharfe N, Merico D, Karanxha A, et al. The effects of RelB deficiency on lymphocyte development and function. J Autoimmun. 2015;65:90–100.

90

Vallabhapurapu S, Matsuzawa A, Zhang W, et al. Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling. Nat Immunol. 2008;9(12):1364–1370.

91

Mitchell K, O’Sullivan J, Missero C, et al. Exome sequence identifies RIPK4 as the Bartsocas-Papas syndrome locus. Am J Hum Genet. 2012;90(1):69–75.

92

Kalay E, Sezgin O, Chellappa V, et al. Mutations in RIPK4 cause the autosomal-recessive form of popliteal pterygium syndrome. Am J Hum Genet. 2012;90(1):76–85.

93

Meylan E, Martinon F, Thome M, Gschwendt M, Tschopp J. RIP4 (DIK/PKK), a novel member of the RIP kinase family, activates NF-κB and is processed during apoptosis. EMBO Rep. 2002;3(12):1201–1208.

94

Kondo S, Schutte BC, Richardson RJ, et al. Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes. Nat Genet. 2002;32(2):285–289.

95

De Groote P, Tran HT, Fransen M, et al. A novel RIPK4-IRF6 connection is required to prevent epithelial fusions characteristic for popliteal pterygium syndromes. Cell Death Differ. 2015;22(6):1012–1024.

96

Richardson RJ, Hammond NL, Coulombe PA, et al. Periderm prevents pathological epithelial adhesions during embryogenesis. J Clin Investig. 2014;124(9):3891–3900.

97

Shih VF, Tsui R, Caldwell A, Hoffmann A. A single NFκB system for both canonical and non-canonical signaling. Cell Res. 2011;21(1):86–102.

98

Bren GD, Solan NJ, Miyoshi H, Pennington KN, Pobst LJ, Paya CV. Transcription of the RelB gene is regulated by NF-κB. Oncogene. 2001;20(53):7722–7733.

99

Shih VF, Davis-Turak J, Macal M, et al. Control of RelB during dendritic cell activation integrates canonical and noncanonical NF-κB pathways. Nat Immunol. 2012;13(12):1162–1170.

100

Fu J, Qu Z, Yan P, et al. The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis. Blood. 2011;117(5):1652–1661.

101

Tao Z, Fusco A, Huang DB, et al. p100/IκBδ sequesters and inhibits NF-κB through κBsome formation. Proc Natl Acad Sci USA. 2014;111(45):15946–15951.

102

Zinatizadeh MR, Miri SR, Zarandi PK, et al. The Hippo Tumor Suppressor Pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in cancer metastasis. Genes Dis. 2019;8(1):48–60.

103

Schmukle AC, Walczak H. No one can whistle a symphony alone – how different ubiquitin linkages cooperate to orchestrate NF-κB activity. J Cell Sci. 2012;125(3):549–559.

104

Chen Z, Lu W. Roles of ubiquitination and SUMOylation on prostate cancer: mechanisms and clinical implications. Int J Mol Sci. 2015;16(3):4560–4580.

105

Ramadan A, Paczesny S. Various forms of tissue damage and danger signals following hematopoietic stem-cell transplantation. Front Immunol. 2015;6, e14.

106

Lu HY, Bauman BM, Arjunaraja S, et al. The CBM-opathies—a rapidly expanding spectrum of human inborn errors of immunity caused by mutations in the CARD11-BCL10-MALT1 complex. Front Immunol. 2018;9, e2078.

107

Kojok K, El-Kadiry AE, Merhi Y. Role of NF-κB in platelet function. Int J Mol Sci. 2019;20(17), e4185.

Genes & Diseases
Pages 287-297
Cite this article:
Zinatizadeh MR, Schock B, Chalbatani GM, et al. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes & Diseases, 2021, 8(3): 287-297. https://doi.org/10.1016/j.gendis.2020.06.005

293

Views

12

Downloads

263

Crossref

N/A

Web of Science

262

Scopus

7

CSCD

Altmetrics

Received: 16 November 2019
Revised: 26 May 2020
Accepted: 12 June 2020
Published: 18 July 2020
© 2020, Chongqing Medical University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return