AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

uCARE Chem Suite and uCAREChemSuiteCLI: Tools for bacterial resistome prediction

Department of Computational Biology and Bioinformatics, JIBB, SHUATS, Prayagraj, Uttar Pradesh, 211007, India
Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
Department of Biological Sciences, SHUATS, Prayagraj, Uttar Pradesh, 211007, India

1 Present address: AgroBioSciences (AgBS) and Chemical & Biochemical Sciences (CBS) Department, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco.]]>

Show Author Information

Abstract

In the era of antibiotic resistance, in silico prediction of bacterial resistome profiles, likely to be associated with inactivation of new potential antibiotics is of utmost importance. Despite this, to the best of our knowledge, no tool exists for such prediction. Therefore, under the rationale that drugs with similar structures have similar resistome profiles, we developed two models, a deterministic model and a stochastic model, to predict the bacterial resistome likely to neutralize uncharacterized but potential chemical structures. The current version of the tool involves the prediction of a resistome for Escherichia coli and Pseudomonas aeruginosa. The deterministic model on omitting two diverse but relatively less characterized drug classes, polyketides and polypeptides showed an accuracy of 87%, a sensitivity of 85%, and a precision of 89%, whereas the stochastic model predicted antibiotic classes of the test set compounds with an accuracy of 72%, a sensitivity of 75%, and a precision of 83%. The models have been implemented in both a standalone package and an online server, uCAREChemSuiteCLI and uCARE Chem Suite, respectively. In addition to resistome prediction, the online version of the suite enables the user to visualize the chemical structure, classify compounds in 19 predefined drug classes, perform pairwise alignment, and cluster with database compounds using a graphical user interface.

Availability: uCARE Chem Suite can be browsed at: https://sauravsaha.shinyapps.io/ucarechemsuite2/, and uCAREChemSuiteCLI can be installed from:

1. CRAN (https://cran.r-project.org/packageZuCAREChemSuiteCLI) and

2. GitHub (https://github.com/sauravbsaha/uCAREChemSuiteCLI).

References

1

Talbot GH, Jezek A, Murray BE, et al. The infectious Diseases society of America's 10 × '20 initiative (10 new systemic antibacterial agents US Food and drug administration approved by 2020): is 20 × '20 a possibility? Clin Infect Dis. 2019;69(1): 1-11.

2

Simpkin VL, Renwick MJ, Kelly R, Mossialos E. Incentivising innovation in antibiotic drug discovery and development: progress, challenges and next steps. J Antibiot (Tokyo). 2017;70(12): 1087-1096.

3

Crofts TS, Gasparrini AJ, Dantas G. Next-generation approaches to understand and combat the antibiotic resistome. Nat Rev Microbiol. 2017;15(7): 422-434.

4

Liu Y, Ding S, Shen J, Zhu K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat Prod Rep. 2019;36(4): 573-592.

5

Soares I, Carneiro AV. Drug class effects: definitions and practical applications. Rev Port Cardiol. 2002;21(9): 1031-1042.

6

Fields FR, Lee SW, McConnell MJ. Using bacterial genomes and essential genes for the development of new antibiotics. Biochem Pharmacol. 2017;134: 74-86.

7

Cao Y, Charisi A, Cheng L, Jiang T, Girke T. ChemmineR: a compound mining framework for R. Bioinformatics. 2008;24(15): 1733-1734.

8
World Health Organization. Global priority list of antibioticresistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/; 2017.
9

Neu HC. Beta-Lactam antibiotics: structural relationships affecting in vitro activity and pharmacologic properties. Rev Infect Dis. 1986;8(Suppl 3): S237-S259.

10

Bajusz D, Rácz A, Héberger K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J Cheminf. 2015;7, e20.

11

Šimundić AM. Measures of diagnostic accuracy: basic definitions. EJIFCC. 2009;19(4): 203-211.

12

Dalby A, Nourse JG, Hounshell WD, et al. Description of several chemical structure file formats used by computer programs developed at Molecular design limited. J Chem Inf Comput Sci. 1992;32(3): 244-255.

13

Ding Y, Teo JWP, Drautz-Moses DI, Schuster SC, Givskov M, Yang L. Acquisition of resistance to carbapenem and macrolide-mediated quorum sensing inhibition by Pseudomonas aeruginosa via ICETn43716385. Commun Biol. 2018;1: e57.

14

Mölstad S, Lundborg CS, Karlsson A, Cars O. Antibiotic prescription rates vary markedly between 13 European countries. Scand J Infect Dis. 2002;34(5): 366-371.

15

Crowder MW, Spencer J, Vila AJ. Metallo-β-lactamases: novel weaponry for antibiotic resistance in bacteria. Acc Chem Res. 2006;39(10): 721-728.

16

Thakuria B, Lahon K. The beta lactam antibiotics as an empirical therapy in a developing country: an update on their current status and recommendations to counter the resistance against them. J Clin Diagn Res. 2013;7(6): 1207-1214.

17

Pechère JC, Köhler T. Patterns and modes of beta-lactam resistance in Pseudomonas aeruginosa. Clin Microbiol Infect. 1999;5: S15-S18.

18

Aparna V, Dineshkumar K, Mohanalakshmi N, Velmurugan D, Hopper W. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PloS One. 2014;9(7), e101840.

19

Yong D, Toleman MA, Giske CG, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53(12): 5046-5054.

20

Shrestha B, Tada T, Miyoshi-Akiyama T, et al. Identification of a novel NDM variant, NDM-13, from a multidrug-resistant Escherichia coli clinical isolate in Nepal. Antimicrob Agents Chemother. 2015;59(9): 5847-5850.

21

Soliman AM, Khalifa HO, Ahmed AM, Shimamoto T, Shimamoto T. Emergence of an NDM-5-producing clinical Escherichia coli isolate in Egypt. Int J Infect Dis. 2016;48: 46-48.

22

Chen D, Gong L, Walsh TR, et al. Infection by and dissemination of NDM-5-producing Escherichia coli in China. J Antimicrob Chemother. 2016;71(2): 563-565.

23

Li X, Fu Y, Shen M, et al. Dissemination of blaNDM-5 gene via an IncX3-type plasmid among non-clonal Escherichia coli in China. Antimicrob Resist Infect Contr. 2018;7, e59.

24

Jovcic B, Lepsanovic Z, Suljagic V, et al. Emergence of NDM-1 metallo-β-lactamase in Pseudomonas aeruginosa clinical isolates from Serbia. Antimicrob Agents Chemother. 2011;55(8): 3929-3931.

25

Flateau C, Janvier F, Delacour H, et al. Recurrent pyelonephritis due to NDM-1 metallo-beta-lactamase producing Pseudomonas aeruginosa in a patient returning from Serbia, France, 2012. Euro Surveill. 2012;17(45), e20311.

26

Shanthi M, Sekar U, Kamalanathan A, Sekar B. Detection of New Delhi metallo beta lactamase-1 (NDM-1) carbapenemase in Pseudomonas aeruginosa in a single centre in southern India. Indian J Med Res. 2014;140(4): 546-550.

27

Teo JW, La MV, Jureen R, Lin RT. Emergence of a New Delhi metallo-β-lactamase-1-producing Pseudomonas aeruginosa in Singapore. Emerg Microb Infect. 2015;4(11), e72.

28

Mataseje LF, Peirano G, Church DL, Conly J, Mulvey M, Pitout JD. Colistin-nonsusceptible Pseudomonas aeruginosa sequence type 654 with blaNDM-1 arrives in North America. Antimicrob Agents Chemother. 2016;60(3): 1794-1800.

29

Dortet L, Poirel L, Nordmann P. Worldwide dissemination of the NDM-type carbapenemases in Gram-negative bacteria. BioMed Res Int. 2014;2014, e249856.

30

Page MGP, Dantier C, Desarbre E. In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant gram-negative bacilli. Antimicrob Agents Chemother. 2010;54(6): 2291-2302.

Genes & Diseases
Pages 721-729
Cite this article:
Saha SB, Gupta VK, Ramteke PW. uCARE Chem Suite and uCAREChemSuiteCLI: Tools for bacterial resistome prediction. Genes & Diseases, 2021, 8(5): 721-729. https://doi.org/10.1016/j.gendis.2020.06.008

338

Views

8

Downloads

0

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 April 2020
Revised: 08 June 2020
Accepted: 21 June 2020
Published: 30 June 2020
© 2020, Chongqing Medical University. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return