AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (588.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Breast and gut microbiome in health and cancer

Jilei Zhang,Yinglin XiaJun Sun( )
Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

The microbiota plays essential roles in health and disease, in both the intestine and the extra-intestine. Dysbiosis of the gut microbiota causes dysfunction in the intestine, which leads to inflammatory, immune, and infectious diseases. Dysbiosis is also associated with diseases beyond the intestine via microbial translocation or metabolisms. The in situ breast microbiome, which may be sourced from the gut through lactation and sexual contact, could be altered and cause breast diseases. In this review, we summarize the recent progress in understanding the interactions among the gut microbiome, breast microbiome, and breast diseases. We discuss the intestinal microbiota, microbial metabolites, and roles of microbiota in immune system. We emphasize the novel roles and mechanisms of the microbiome (both in situ and gastrointestinal sourced) and bacterial products in the development and progression of breast cancer. The intestinal microbial translocation suggests that the gut microbiome is translocated to the skin and subsequently to the breast tissue. The gut bacterial translocation is also due to the increased intestinal permeability. The breast and intestinal microbiota are important factors in maintaining healthy breasts. Micronutrition queuine (Q) is derived from a de novo synthesized metabolite in bacteria. All human cells use queuine and incorporate it into the wobble anticodon position of specific transfer RNAs. We have demonstrated that Q modification regulates genes critical in tight junctions and migration in human breast cancer cells and a breast tumor model. We further discuss the challenges and future perspectives that can move the field forward for prevention, diagnosis, and treatment of breast diseases.

References

1

Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci. U S A. 1998;95(12): 6578-6583.

2

Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6): 1258-1270.

3

O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7): 688-693.

4

Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science (New York, N.Y.). 2006;312(5778): 1355-1359.

5

Chow J, Lee SM, Shen Y, Khosravi A, Mazmanian SK. Host-bacterial symbiosis in health and disease. Adv Immunol. 2010;107: 243-274.

6

Song M, Chan AT, Sun J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer. Gastroenterology. 2020;158(2): 322-340.

7

Brestoff JR, Artis D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol. 2013;14(7): 676-684.

8

Ruff WE, Kriegel MA. Autoimmune host-microbiota interactions at barrier sites and beyond. Trends Mol Med. 2015;21(4): 233-244.

9

Sommer F, Backhed F. The gut microbiota—masters of host development and physiology. Nat Rev Microbiol. 2013;11(4): 227-238.

10

Darbre PD, Fernandez MF. Environmental oestrogens and breast cancer: long-term low-dose effects of mixtures of various chemical combinations. J Epidemiol Commun Health. 2013;67(3): 203-205.

11

Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional subtypes of breast cancers. Canc Biol Ther. 2010;10(10): 955-960.

12

Vuong D, Simpson PT, Green B, Cummings MC, Lakhani SR. Molecular classification of breast cancer. Virchows Arch Int J Pathol. 2014;465(1): 1-14.

13

Ghoncheh M, Pournamdar Z, Salehiniya H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev APJCP. 2016;17(S3): 43-46.

14
Global Cancer Observatory W. Cancer Population Fact Sheets; 2018. http://gco.iarc.fr/today/fact-sheets-populations.
15

Rudolph A, Chang-Claude J, Schmidt MK. Gene-environment interaction and risk of breast cancer. Br J Cancer. 2016;114(2): 125-133.

16

Wu AH, Tseng C, Vigen C, et al. Gut microbiome associations with breast cancer risk factors and tumor characteristics: a pilot study. Breast Canc Res Treat. 2020;182(2): 451-463.

17
Sun J, Dudeja PK. Mechanisms Underlying HosteMicrobiome Interactions in Pathophysiology of Human Diseases. New York: Springer; 2018.
18

Almeida A, Mitchell AL, Boland M, et al. A new genomic blueprint of the human gut microbiota. Nature. 2019;568(7753): 499-504.

19

Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell. 2016;164(3): 337-340.

20

Sun J, Chang EB. Exploring gut microbes in human health and disease: pushing the envelope. Genes Dis. 2014;1(2): 132-139.

21

Tomkovich S, Jobin C. Microbiota and host immune responses: a love-hate relationship. Immunology. 2016;147(1): 1-10.

22

Vieira SM, Pagovich OE, Kriegel MA. Diet, microbiota and autoimmune diseases. Lupus. 2014;23(6): 518-526.

23

Bedarf JR, Hildebrand F, Coelho LP, et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naive Parkinson's disease patients. Genome Med. 2017;9(1), e39.

24

Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498(7452): 99-103.

25

Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285): 59-65.

26

Schirmer M, Franzosa EA, Lloyd-Price J, et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol. 2018;3(3): 337-346.

27

Wirbel J, Pyl PT, Kartal E, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25(4): 679-689.

28

Bakke D, Sun J. Ancient nuclear receptor VDR with new functions: microbiome and inflammation. Inflamm Bowel Dis. 2018;24(6): 1149-1154.

29

Wu S, Yi J, Zhang YG, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 2015;3(4), e12356.

30

Rowin J, Xia Y, Jung B, Sun J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol Rep. 2017;5(18), e13443.

31

Herdewyn S, Cirillo C, Van Den Bosch L, Robberecht W, Vanden Berghe P, Van Damme P. Prevention of intestinal obstruction reveals progressive neurodegeneration in mutant TDP-43 (A315T) mice. Mol Neurodegener. 2014;9, e24.

32

Zhang Y-g, Wu S, Yi J, et al. Target intestinal microbiota to alleviate disease progression in amyotrophic lateral sclerosis. Clin Therapeut. 2017;39(2): 322-336.

33

Zhou J, Sun J. Does the gut drive amyotrophic lateral sclerosis progress? Future Med. 2015;5(5): 375-378.

34

Younes JA, Lievens E, Hummelen R, van der Westen R, Reid G, Petrova MI. Women and their microbes: the unexpected friendship. Trends Microbiol. 2018;26(1): 16-32.

35

Urbaniak C, Cummins J, Brackstone M, et al. Microbiota of human breast tissue. Appl Environ Microbiol. 2014;80(10): 3007-3014.

36

Zhang J, Lu R, Zhang Y, et al. tRNA queuosine modification enzyme modulates the growth and microbiome recruitment to breast tumors. Cancers. 2020;12(3), e628.

37

Gomez-Gallego C, Garcia-Mantrana I, Salminen S, Collado MC. The human milk microbiome and factors influencing its composition and activity. Semin Fetal Neonatal Med. 2016;21(6): 400-405.

38

Benito D, Lozano C, Jiménez E, et al. Characterization of Staphylococcus aureus strains isolated from faeces of healthy neonates and potential mother-to-infant microbial transmission through breastfeeding. FEMS Microbiol Ecol. 2015;91(3), fiv007.

39

Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6, e23129.

40

Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C. Vertical mother–neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol. 2014;16(9): 2891-2904.

41

Makino H, Kushiro A, Ishikawa E, et al. Mother-to-infant transmission of intestinal bifidobacterial strains has an impact on the early development of vaginally delivered infant's microbiota. PLoS One. 2013;8(11), e78331.

42

Makino H, Martin R, Ishikawa E, et al. Multilocus sequence typing of bifidobacterial strains from infant's faeces and human milk: are bifidobacteria being sustainably shared during breastfeeding? Benef Microbes. 2015;6(4): 563-572.

43

Martín V, Maldonado-Barragán A, Moles L, et al. Sharing of bacterial strains between breast milk and infant feces. J Hum Lactation. 2012;28(1): 36-44.

44

Prentice PM, Schoemaker MH, Vervoort J, et al. Human Milk Short-Chain Fatty Acid Composition Is Associated with Adiposity Outcomes in Infants. J Nutr. 2019;149(5): 716-722.

45

Macia L, Mackay CR. Dysfunctional microbiota with reduced capacity to produce butyrate as a basis for allergic diseases. J Allergy Clin Immunol. 2019;144(6): 1513-1515.

46

Banerjee S, Tian T, Wei Z, et al. Distinct microbial signatures associated with different breast cancer types. Front Microbiol. 2018;9, e951.

47

Xuan C, Shamonki JM, Chung A, et al. Microbial dysbiosis is associated with human breast cancer. PLoS One. 2014;9(1), e83744.

48

Urbaniak C, Gloor GB, Brackstone M, Scott L, Tangney M, Reid G. The microbiota of breast tissue and its association with breast cancer. Appl Environ Microbiol. 2016;82(16): 5039-5048.

49

Chen CH, Lu YS, Cheng AL, et al. Disparity in tumor immune microenvironment of breast cancer and prognostic impact: Asian versus Western populations. Oncol. 2020;25(1), e16.

50

Sam Ma Z, Guan Q, Ye C, Zhang C, Foster JA, Forney LJ. Network analysis suggests a potentially 'evil' alliance of opportunistic pathogens inhibited by a cooperative network in human milk bacterial communities. Sci Rep. 2015;5, e8275.

51

Fernandez MF, Reina-Perez I, Astorga JM, Rodriguez-Carrillo A, Plaza-Diaz J, Fontana L. Breast cancer and its relationship with the microbiota. Int J Environ Res Publ Health. 2018;15(8), e1747.

52

Hieken TJ, Chen J, Hoskin TL, et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep. 2016;6, e30751.

53

Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2(4): 361-367.

54

Adiliaghdam F, Almpani M, Gharedaghi MH, Najibi M, Hodin RA, Rahme LG. Targeting bacterial quorum sensing shows promise in improving intestinal barrier function following burnsite infection. Mol Med Rep. 2019;19(5): 4057-4066.

55

Ma HD, Zhao ZB, Ma WT, et al. Gut microbiota translocation promotes autoimmune cholangitis. J Autoimmun. 2018;95: 47-57.

56

Gopalakrishnan V, Helmink BA, Spencer CN, Reuben A, Wargo JA. The influence of the gut microbiome on cancer, immunity, and cancer immunotherapy. Canc Cell. 2018;33(4): 570-580.

57

Kirkup B, McKee A, Makin K, et al. Perturbation of the gut microbiota by antibiotics results in accelerated breast tumour growth and metabolic dysregulation. bioRxiv. 2019 Jan 1: 553602.

58

Rosean CB, Bostic RR, Ferey JC, et al. Pre-existing commensal dysbiosis is a host-intrinsic regulator of tissue inflammation and tumor cell dissemination in hormone receptor-positive breast cancer. Cancer Res. 2019;79(14): 3662-3675.

59

Yang J, Tan Q, Fu Q, et al. Gastrointestinal microbiome and breast cancer: correlations, mechanisms and potential clinical implications. Breast Cancer (Tokyo, Japan). 2017;24(2): 220-228.

60

Falk RT, Brinton LA, Dorgan JF, et al. Relationship of serum estrogens and estrogen metabolites to postmenopausal breast cancer risk: a nested case-control study. Breast Cancer Res. 2013;15(2), R34.

61

Fuhrman BJ, Schairer C, Gail MH, et al. Estrogen metabolism and risk of breast cancer in postmenopausal women. J Natl Cancer Inst. 2012;104(4): 326-339.

62

Fuhrman BJ, Feigelson HS, Flores R, et al. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J Clin Endocrinol Metab. 2014;99(12): 4632-4640.

63

Flores R, Shi J, Fuhrman B, et al. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med. 2012;10, e253.

64

Zengul AG, Demark-Wahnefried W, Barnes S, et al. Associations between dietary fiber, the fecal microbiota and estrogen metabolism in postmenopausal women with breast cancer. Nutr Canc. 2020: 1-10.

65

Samavat H, Kurzer MS. Estrogen metabolism and breast cancer. Canc Lett. 2015;356(2 Pt A): 231-243.

66

Miko E, Vida A, Kovacs T, et al. Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochim Biophys Acta Bioenerg. 2018;1859(9): 958-974.

67

Salimi V, Shahsavari Z, Safizadeh B, Hosseini A, Khademian N, Tavakoli-Yaraki M. Sodium butyrate promotes apoptosis in breast cancer cells through reactive oxygen species (ROS) formation and mitochondrial impairment. Lipids Health Dis. 2017;16(1), e208.

68

Wang Y, Hu PC, Ma YB, et al. Sodium butyrate-induced apoptosis and ultrastructural changes in MCF-7 breast cancer cells. Ultrastruct Pathol. 2016;40(4): 200-204.

69

Lee KM, Lee M, Lee J, et al. Enhanced anti-tumor activity and cytotoxic effect on cancer stem cell population of metformin-butyrate compared with metformin HCl in breast cancer. Oncotarget. 2016;7(25): 38500-38512.

70

Garmpis N, Damaskos C, Garmpi A, et al. Histone deacetylases as new therapeutic targets in triple-negative breast cancer: progress and promises. Cancer Genomics Proteomics. 2017;14(5): 299-313.

71

Pellegrini M, Ippolito M, Monge T, et al. Gut microbiota composition after diet and probiotics in overweight breast cancer survivors: a randomized open-label pilot intervention trial. Nutrition. 2020, e110749.

72

Rutkowski MR, Stephen TL, Svoronos N, et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell. 2015;27(1): 27-40.

73

Lakritz JR, Poutahidis T, Mirabal S, et al. Gut bacteria require neutrophils to promote mammary tumorigenesis. Oncotarget. 2015;6(11), e9387.

74

Erdman SE, Poutahidis T, Tomczak M, et al. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am J Pathol. 2003;162(2): 691-702.

75

Erdman SE, Poutahidis T. Gut bacteria and cancer. Biochim Biophys Acta Rev Cancer. 2015;1856(1): 86-90.

76

Gritzapis AD, Voutsas IF, Lekka E, et al. Identification of a novel immunogenic HLA-A∗0201-binding epitope of HER-2/neu with potent antitumor properties. J Immunol. 2008;181(1): 146-154.

77

Rao VP, Poutahidis T, Ge Z, et al. Innate immune inflammatory response against enteric bacteria Helicobacter hepaticus induces mammary adenocarcinoma in mice. Canc Res. 2006;66(15): 7395-7400.

78

Bhatelia K, Singh K, Singh R. TLRs: linking inflammation and breast cancer. Cell Signal. 2014;26(11): 2350-2357.

79

Zhu J, Liao M, Yao Z, et al. Breast cancer in postmenopausal women is associated with an altered gut metagenome. Microbiome. 2018;6(1), e136.

80

Plaza-Diaz J, Alvarez-Mercado AI, Ruiz-Marin CM, et al. Association of breast and gut microbiota dysbiosis and the risk of breast cancer: a case-control clinical study. BMC Cancer. 2019;19(1): 495.

81

Ma J, Sun L, Liu Y, et al. Alter between gut bacteria and blood metabolites and the anti-tumor effects of Faecalibacterium prausnitzii in breast cancer. BMC Microbiol. 2020;20: 1-19.

82

Fergus C, Barnes D, Alqasem MA, Kelly VP. The queuine micronutrient: charting a course from microbe to man. Nutrients. 2015;7(4): 2897-2929.

83

Zaborske JM, DuMont VL, Wallace EW, Pan T, Aquadro CF, Drummond DA. A nutrient-driven tRNA modification alters translational fidelity and genome-wide protein coding across an animal genus. PLoS Biol. 2014;12(12), e1002015.

84

White RJ. RNA polymerase Ⅲ transcription and cancer. Oncogene. 2004;23(18): 3208-3216.

Genes & Diseases
Pages 581-589
Cite this article:
Zhang J, Xia Y, Sun J. Breast and gut microbiome in health and cancer. Genes & Diseases, 2021, 8(5): 581-589. https://doi.org/10.1016/j.gendis.2020.08.002

209

Views

3

Downloads

55

Crossref

N/A

Web of Science

51

Scopus

0

CSCD

Altmetrics

Received: 20 April 2020
Revised: 19 July 2020
Accepted: 14 August 2020
Published: 20 August 2020
© 2020, Chongqing Medical University. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return