AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

MiRNAs and lncRNAs in NK cell biology and NK/T-cell lymphoma

Fengxia Gaoa,b,Sirong Hea,bAishun Jina,b( )
Department of Immunology, Chongqing Medical University, Chongqing, 400010, PR China
Chongqing Key Laboratory of Tumor Immunology and Tumor Immunotherapy, Chongqing Medical University, No.1, Medical School Road, Yuzhong District, Chongqing, 400010, PR China

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

The important role of lncRNAs and miRNAs in directing immune responses has become increasingly clear. Recent evidence conforms that miRNAs and lncRNAs are involved in NK cell biology and diseases through RNA–protein, RNA–RNA, or RNA–DNA interactions. In this view, we summarize the contribution of miRNAs and lncRNAs to NK cell lineage development, activation and function, highlight the biological significance of functional miRNAs or lncRNAs in NKTL and discuss the potential of these miRNAs and lncRNAs as innovative biomarkers/targets for NKTL early diagnosis, target treatment and prognostic evaluations.

References

1

Vasudevan S, Tong Y, Steitz J. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007;318(5858): 1931-1934.

2

Bartel D. Metazoan MicroRNAs. Cell. 2018;173: 20-51.

3

Rasko J, Wong J. Nuclear microRNAs in normal hemopoiesis and cancer. J Hematol Oncol. 2017;10(1), e8.

4

Hausser J, Zavolan M. Identification and consequences of miRNA-target interactions–beyond repression of gene expression. Nat Rev Genet. 2014;15(9): 599-612.

5

Denaro N, Merlano M, Lo Nigro C. Long non-coding RNAs as regulators of cancer immunity. Mol Oncology. 2019;13(1): 61-73.

6

Shi X, Sun M, Wu Y, et al. Post-transcriptional regulation of long noncoding RNAs in cancer. Tumour Biol. 2015;36(2): 503-513.

7

Zhu J. LncRNA AK023391 promotes tumorigenesis and invasion of gastric cancer through activation of the PI3K/Akt signaling pathway. J Exp Clin Canc Res. 2017;36(1), e194.

8

Yang J, Tao H, Deng Z, Chao L, Li J. Non-coding RNA-mediated epigenetic regulation of liver fibrosis. Metab Clin Exp. 2015;64(11): 1386-1394.

9

Huang Y, Zheng Y, Jia L, Li W. Long noncoding RNA H19 promotes osteoblast differentiation via TGF-β1/smad 3/HDAC signaling pathway by deriving miR-675. Stem Cells (Dayton). 2015;33(12): 3481-3492.

10

Jewett A, Kos J, Fong Y, et al. NK cells shape pancreatic and oral tumor microenvironments; role in inhibition of tumor growth and metastasis. Semin Canc Biol. 2018;53: 178-188.

11

Lin W, Man X, Li P, et al. NK cells are negatively regulated by sCD83 in experimental autoimmune uveitis. Sci Rep. 2017;7(1), e12895.

12

Schmidt L, Eskiocak B, Kohn R, et al. Enhanced adaptive immune responses in lung adenocarcinoma through natural killer cell stimulation. Proc Natl Acad Sci USA. 2019;116(35): 17460-17469.

13

Shoyab M. Regulation of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor expression by Oncostatin M. Blood. 1993;82(1): 33-37.

14

Henao-Mejia. Long noncoding RNAs and the regulation of innate immunity and host-virus interactions. J Leukoc Biol. 2019;106(1): 83-93.

15

Chang H. Long noncoding RNA in hematopoiesis and immunity. Immunity. 2015;42(5): 792-804.

16

Boxberger N, Hecker M, Zettl U. Dysregulation of inflammasome priming and activation by MicroRNAs in human immune-mediated diseases. J Immunol. 2019;202(8): 2177-2187.

17

Yang T, Ge B. miRNAs in immune responses to Mycobacterium tuberculosis infection. Canc Lett. 2018;431: 22-30.

18

Wang P, Xue Y, Han Y, et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science (New York, N.Y.). 2014;344(6181): 310-313.

19

Baumjohann D. Diverse functions of miR-17-92 cluster microRNAs in T helper cells. Canc Lett. 2018;423: 147-152.

20

Francesco C, Sandrine I, Rodney P, Olivier L, Harinder S, James D. Differential requirement for the transcription factor PU. 1 in the generation of natural killer cells versus B and T cells. Blood. 2001;97(9): 2625-2632.

21

Geogopoulos K. Lack of natural killer cell precursors in fetal liver of ikaros knockout mutant mice. Nat Immun. 1998;16(4): 137-145.

22

Ramirez K, Chandler K, Spaulding C, et al. Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1. Immunity. 2012;36(6): 921-932.

23

Gascoyne D, Long E, Veiga-Fernandes H, et al. The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol. 2009;10(10): 1118-1124.

24

Brian DLT. Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue–inducer cell and NK cell lineages. Nat Immunol. 2010;11(10): 945-952.

25

Townsend MJ, Weinmann AS, Matsuda JL, et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity. 2004;20(4): 477-494.

26

Narni-Mancinelli E, Ugolini S, Vivier E. Tuning the threshold of natural killer cell responses. Curr Opin Immunol. 2013;25(1): 53-58.

27

Kallies A, Carotta S, Huntington N, et al. A role for Blimp 1 in the transcriptional network controlling natural killer cell maturation. Blood. 2011;117(6): 1869-1879.

28

Walker JA, Clark PA, Crisp A, et al. Polychromic reporter mice reveal unappreciated innate lymphoid cell progenitor heterogeneity and elusive ILC3 progenitors in bone marrow. Immunity. 2019;51(1): 104-118.

29

Steven L. The transcription factors T-bet and eomes control key checkpoints of natural killer cell maturation. Immunity. 2012;36(1): 55-67.

30

Holmes M, Huntington N, Thong R, et al. Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO J. 2014;33(22): 2721-2734.

31

Castro W, Chelbi S, Niogret C, et al. The transcription factor Rfx7 limits metabolism of NK cells and promotes their maintenance and immunity. Nat Immunol. 2018;19(8): 809-820.

32

Rudensky A. Interactions between innate and adaptive lymphocytes. Nat Rev Immunol. 2014;14: 631-639.

33

Abel A, Yang C, Thakar M, Malarkannan S. Natural killer cells: development, maturation, and clinical utilization. Front Immunol. 2018;9: 1869.

34

Weissman I. Lymphoid development from hematopoietic stem cells. Int J Hematol. 1999;69(4): 217-226.

35

Ogawa M. CD38 expression by hematopoietic stem cells of newborn and juvenile mice. Leukemia. 2003;17(1): 171-174.

36

Whiteside T. Expression and function of CD7 molecule on human natural killer cells. J Immunol. 1994;152(2): 517-526.

37

Luetke-Eversloh M, Killig M, Romagnani C. Signatures of human NK cell development and terminal differentiation. Front Immunol. 2013;4, e499.

38

Renoux V, Zriwil A, Peitzsch C, et al. Identification of a human natural killer cell lineage-restricted progenitor in fetal and adult tissues. Immunity. 2015;43(2): 394-407.

39

Malmberg K. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood. 2010;116(19): 3853-3864.

40

Dandolo L. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci USA. 2013;110(51): 20693-20698.

41

Mowel WK, McCright SJ, Kotzin JJ, et al. Group 1 innate lymphoid cell lineage identity is determined by a cis -regulatory element marked by a long non-coding RNA. Immunity. 2017;47(3): 435-449.

42

Zhang R, Ni F, Fu B, et al. A long noncoding RNA positively regulates CD56 in human natural killer cells. Oncotarget. 2016;7(45): 72546-72558.

43

Sullivan RP, Leong JW, Schneider SE, et al. MicroRNA-15/16 antagonizes Myb to control NK cell maturation. J Immunol. 2015;195(6): 2806-2817.

44

Lanier L. miR-150 regulates the development of NK and iNKT cells. J Exp Med. 2011;208(13): 2717-2731.

45

Cichocki F, Felices M, McCullar V, et al. Cutting edge: microRNA-181 promotes human NK cell development by regulating Notch signaling. J Immunol. 2011;187(12): 6171-6175.

46

Yun S, Lee S, Kim J, et al. Integrated mRNA-microRNA profiling of human NK cell differentiation identifies MiR-583 as a negative regulator of IL2Rγ expression. PloS One. 2014;9(10), e108913.

47

Mundy-Bosse B, Scoville S, Chen L, et al. MicroRNA-29b mediates altered innate immune development in acute leukemia. J Clin Invest. 2016;126(12): 4404-4416.

48

Mantovani S, Oliviero B, Lombardi A, et al. Deficient natural killer cell NKp30-mediated function and altered NCR3 splice variants in hepatocellular carcinoma. Hepatology. 2019;69(3): 1165-1179.

49

Paczulla A, Rothfelder K, Raffel S, et al. Publisher Correction: absence of NKG2D ligands defines leukaemia stem cells and mediates their immune evasion. Nature. 2019;572(7770), E19.

50

Parodi M, Favoreel H, Candiano G, et al. NKp44-NKp44 ligand interactions in the regulation of natural killer cells and other innate lymphoid cells in humans. Front Immunol. 2019;10, e719.

51

Costello R, Boehrer A, Sanchez C, et al. Differential expression of natural killer cell activating receptors in blood versus bone marrow in patients with monoclonal gammopathy. Immunology. 2013;139(3): 338-341.

52

Guillamón C, Martínez-Sánchez M, Gimeno L, et al. NK cell education in tumor immune surveillance: DNAM-1/KIR receptor ratios as predictive biomarkers for solid tumor outcome. Cancer Immunology Research. 2018;6(12): 1537-1547.

53

Sivori S, Vacca P, Del Zotto G, Munari E, Mingari M, Moretta L. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol Immunol. 2019;16(5): 430-441.

54

McGrath E, Ryan E, Lynch L, et al. Changes in endometrial natural killer cell expression of CD94, CD158a and CD158b are associated with infertility. AJRI (Am J Reprod Immunol). 2009;61(4): 265-276.

55

Zhou M, Zhao C, Chen X, et al. MicroRNA-34a promotes MICB expression in hepatocytes. Carcinogenesis. 2018;39: 1477-1487.

56

Abdelrahman M, Fawzy I, Bassiouni A, et al. Enhancing NK cell cytotoxicity by miR-182 in hepatocellular carcinoma. Hum Immunol. 2016;77(8): 667-673.

57

Chen L. MicroRNA-30c promotes natural killer cell cytotoxicity via up-regulating the expression level of NKG2D. Life Sci. 2016;15(151): 174-181.

58

Neviani P, Wise P, Murtadha M, et al. Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms. Canc Res. 2019;79(6): 1151-1164.

59

Cho H, Chung J, Kim S, et al. MICA/B and ULBP1 NKG2D ligands are independent predictors of good prognosis in cervical cancer. BMC Cancer. 2014;14, e957.

60

Shen J, Pan J, Du C, et al. Silencing NKG2D ligand-targeting miRNAs enhances natural killer cell-mediated cytotoxicity in breast cancer. Cell Death Dis. 2017;8, e2740.

61

Hanah M. Host immune system gene targeting by a viral miRNA. Science. 2007;317(5836): 376-381.

62

Espinoza J, Takami A, Yoshioka K, et al. Human microRNA-1245 down-regulates the NKG2D receptor in natural killer cells and impairs NKG2D-mediated functions. Haematologica. 2012;97(9): 1295-1303.

63

Tang S, Fu H, Xu Q, Zhou Y. miR-20a regulates sensitivity of colorectal cancer cells to NK cells by targeting MICA. Biosci Rep. 2019;39(7), BSR20180695.

64

Chen L. miR-30c-1* promotes natural killer cell cytotoxicity against human hepatoma cells by targeting the transcription factor HMBOX1. Canc Sci. 2012;103(4): 645-652.

65

Malmberg K, Carlsten M, Björklund A, Sohlberg E, Bryceson Y, Ljunggren H. Natural killer cell-mediated immunosurveillance of human cancer. Semin Immunol. 2017;31: 20-29.

66

Mandelboim O. IFNG-AS1 enhances interferon gamma production in human natural killer cells. iScience. 2019;25(11): 466-473.

67

Fang P, Xiang L, Chen W, et al. LncRNA GAS5 enhanced the killing effect of NK cell on liver cancer through regulating miR-544/RUNX3. Innate Immun. 2019;25(2): 99-109.

68

Ni F, Guo C, Sun R, et al. MicroRNA transcriptomes of distinct human NK cell populations identify miR-362-5p as an essential regulator of NK cell function. Sci Rep. 2015;5, e9993.

69

Regis S, Caliendo F, Dondero A, et al. TGF-β1 downregulates the expression of CXCR1 by inducing miR-27a-5p in primary human NK cells. Front Immunol. 2017;8, e868.

70

Fehniger T, Wylie T, Germino E, et al. Next-generation sequencing identifies the natural killer cell microRNA transcriptome. Genome Res. 2010;20(11): 1590-1604.

71

Kim T, Lee S, Yun S, et al. Human microRNA-27a* targets Prf1 and GzmB expression to regulate NK-cell cytotoxicity. Blood. 2011;118(20): 5476-5486.

72

Liu S, Chen L, Zeng Y, et al. Suppressed expression of miR-378 targeting gzmb in NK cells is required to control dengue virus infection. Cell Mol Immunol. 2016;13(5): 700-708.

73

Wang P, Gu Y, Zhang Q, et al. Identification of resting and type I IFN-activated human NK cell miRNomes reveals microRNA-378 and microRNA-30e as negative regulators of NK cell cytotoxicity. J Immunol. 2012;189(1): 211-221.

74

Johnnidis J, Harris M, Wheeler R, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008;451(7182): 1125-1129.

75

Sanchez-Martínez D, Krzywinska E, Rathore M, et al. All-trans retinoic acid (ATRA) induces miR-23a expression, decreases CTSC expression and granzyme B activity leading to impaired NK cell cytotoxicity. Int J Biochem Cell Biol. 2014;49: 42-52.

76

Bacchi C. Clinicopathologic and molecular features of 122 Brazilian cases of nodal and extranodal NK/T-Cell lymphoma, nasal type, with EBV subtyping analysis. Am J Surg Pathol. 2011;35(8): 1195-1203.

77

Lewis L. Evolutionary struggles between NK cells and viruses. Nat Rev Immunol. 2008;8(4): 259-268.

78

Huang W, Lin C. EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-γ-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am J Pathol. 2014;184(4): 1185-1197.

79

Ramakrishnan R, Donahue H, Garcia D, et al. Epstein-Barr virus BART9 miRNA modulates LMP1 levels and affects growth rate of nasal NK T cell lymphomas. PloS One. 2011;6, e27271.

80

Alles J, Menegatti J, Motsch N, et al. miRNA expression profiling of Epstein-Barr virus-associated NKTL cell lines by Illumina deep sequencing. FEBS open bio. 2016;6: 251-263.

81

de Mel S, Soon G, Mok Y, et al. The genomics and molecular biology of natural killer/T-cell lymphoma: opportunities for translation. Int J Mol Sci. 2018;19(7), e1931.

82

Ng S, Yan J, Huang G, et al. Dysregulated microRNAs affect pathways and targets of biologic relevance in nasal-type natural killer/T-cell lymphoma. Blood. 2011;118(18): 4919-4929.

83

Yamanaka Y, Tagawa H, Takahashi N, et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood. 2009;114(15): 3265-3275.

84

Chang Y, Cui M, Fu X, et al. MiRNA-155 regulates lymphangiogenesis in natural killer/T-cell lymphoma by targeting BRG1. Canc Biol Ther. 2019;20(1): 31-41.

85

Chen H, Huang W, Yang L, Lin C. The PTEN-AKT-mTOR/RICTOR pathway in nasal natural killer cell lymphoma is activated by miR-494-3p via PTEN but inhibited by miR-142-3p via RICTOR. Am J Pathol. 2015;185(5): 1487-1499.

86

Watanabe A, Tagawa H, Yamashita J, et al. The role of microRNA-150 as a tumor suppressor in malignant lymphoma. Leukemia. 2011;25(8): 1324-1334.

87

Paik J, Jang J, Jeon Y, et al. MicroRNA-146a downregulates NFκB activity via targeting TRAF6 and functions as a tumor suppressor having strong prognostic implications in NK/T cell lymphoma. Clin Canc Res : an official journal of the American Association for Cancer Research. 2011;17(14): 4761-4771.

88

Go H, Jang J, Kim C, Huh J, Kim P, Jeon Y. Identification of microRNAs modulated by DNA hypomethylating drugs in extranodal NK/T-cell lymphoma. Leuk Lymphoma. 2020;61(1): 66-74.

89

Zhang M. miRNA-155 modulates the malignant biological characteristics of NK/T-Cell lymphoma cells by targeting FOXO3a gene. J Huazhong Univ Sci Technol. 2014;34(6): 882-888.

90

Wang S, Song W, Wei S, et al. Functional titanium carbide MXenes-loaded entropy-driven RNA explorer for long noncoding RNA PCA3 imaging in live cells. Anal Chem. 2019;91(13): 8622-8629.

91

Yoon S. Association of the long non-coding RNA MALAT1 with the polycomb repressive complex pathway in T and NK cell lymphoma. Oncotarget. 2017;8(19): 31305-31317.

92

Liang L, Nong L, Zhang S, et al. The downregulation of PRDM1/Blimp-1 is associated with aberrant expression of miR-223 in extranodal NK/T-cell lymphoma, nasal type. J Exp Clin Cancer Res. 2014;33(1), e7.

93

Liang L, Zhang Z, Wang Y, et al. The genetic deletion of 6q21 and PRDM1 and clinical implications in extranodal NK/T cell lymphoma, nasal type. Biomed Res Int. 2015;2015, e435423.

94

Harabuchi Y. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma. Am J Hematol. 2014;89(1): 25-33.

95

Trotta R, Chen L, Ciarlariello D, et al. miR-155 regulates IFN-γ production in natural killer cells. Blood. 2012;119(15): 3478-3485.

96

Cheng Y, Ren J, Zhao J, et al. MicroRNA-155 regulates interferon-γ production in natural killer cells via Tim-3 signalling in chronic hepatitis C virus infection. Immunology. 2015;145(4): 485-497.

97

Wang H, Zhang Y, Wu X, et al. Regulation of human natural killer cell IFN-γ production by microRNA-146a via targeting the NF-κB signaling pathway. Front Immunol. 2018;9, e293.

98

Xu D, Han Q, Hou Z, Zhang C, Zhang J. miR-146a negatively regulates NK cell functions via STAT1 signaling. Cell Mol Immunol. 2017;14(8): 712-720.

99

Yang Y, Jin Z, Dong R, et al. MicroRNA-29b/142-5p contribute to the pathogenesis of biliary atresia by regulating the IFN-γ gene. Cell Death Dis. 2018;9(5), e545.

100

Guo HQ, Huang GL, Guo CC, Pu XX, Lin TY. Diagnostic and prognostic value of circulating miR-221 for extranodal natural killer/T-cell lymphoma. Dis Markers. 2010;29(5): 251-258.

101

Kitadate A, Ikeda S, Teshima K, et al. MicroRNA-16 mediates the regulation of a senescence-apoptosis switch in cutaneous T-cell and other non-Hodgkin lymphomas. Oncogene. 2016;35(28): 3692-3704.

102

Chang T, Yu D, Lee Y, et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet. 2008;40(1): 43-50.

Genes & Diseases
Pages 590-602
Cite this article:
Gao F, He S, Jin A. MiRNAs and lncRNAs in NK cell biology and NK/T-cell lymphoma. Genes & Diseases, 2021, 8(5): 590-602. https://doi.org/10.1016/j.gendis.2020.08.006

206

Views

3

Downloads

7

Crossref

N/A

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 01 May 2020
Revised: 07 August 2020
Accepted: 19 August 2020
Published: 31 August 2020
© 2020, Chongqing Medical University. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return