AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Full Length Article | Open Access

Hepatic SIRT6 deficit promotes liver tumorigenesis in the mice models

Mei Wanga,b,1Linhua Lanc,1Fan Yangd,1Shan Jiangd,1Haojun XuaChengfei ZhangaGuoren Zhoue( )Hongping Xiaa,b,e( )Jinglin Xiac( )
Department of Pathology in the School of Basic Medical Sciences & Sir Run Run Hospital & State Key Laboratory of Reproductive Medicine & Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
Department of Immunology, Medical School of Southeast University, Nanjing, Jiangsu 210009, PR China
The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, PR China
The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu 210009, PR China

Peer review under responsibility of Chongqing Medical University.

1 These authors contributed equally to this work.

Show Author Information

Abstract

SIRT6 belongs to class Ⅲ sirtuin family with NAD+-dependent histone deacetylase activities and controls multiple processes including aging, metabolism and inflammation. In recent years, increasing studies showed tumor suppressor role of SIRT6 in HCC development. We established a two-stage DEN followed CCl4 induced liver carcinogenesis in the hepatic-specific SIRT6 HKO mice models and found that hepatic SIRT6 deficit significantly promotes liver injury and liver cancer through inhibition of the ERK1/2 pathway. SIRT6 was compensatory upregulated in mice tumor tissues and human HCC cells and overexpressed SIRT6 inhibits tumor growth both in vitro and in vivo. Taken together, we provide a useful mouse model for delineating the molecular pathways involved in chronic liver diseases and primary liver cancer and suggest that SIRT6 can be a promising target for HCC therapies.

References

1

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA: Cancer J Clin. 2015;65(2): 87-108.

2

Muller M, Bird TG, Nault JC. The landscape of gene mutations in cirrhosis and hepatocellular carcinoma. J Hepatol. 2020;72(5): 990-1002.

3

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2018;68(6): 394-424.

4

El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132(7): 2557-2576.

5

Fuchs BC, Hoshida Y, Fujii T, et al. Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma. Hepatology. 2014;59(4): 1577-1590.

6

Chen HJ, Hu MH, Xu FG, Xu HJ, She JJ, Xia HP. Understanding the inflammation-cancer transformation in the development of primary liver cancer. Hepatoma Res. 2018;4(7): 29.

7

Wang Z, Lin H, Hua F, Hu ZW. Repairing DNA damage by XRCC6/KU70 reverses TLR4-deficiency-worsened HCC development via restoring senescence and autophagic flux. Autophagy. 2013;9(6): 925-927.

8

Rabachini T, Fernandez-Marrero Y, Montani M, et al. BOK promotes chemical-induced hepatocarcinogenesis in mice. Cell Death Differ. 2018;25(4): 708-720.

9

Llovet JM, Zucman-Rossi J, Pikarsky E, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2016;2: 16018.

10

Uehara T, Pogribny IP, Rusyn I. The DEN and CCl4 -induced mouse model of fibrosis and inflammation-associated hepatocellular carcinoma. Curr Protoc Pharmacol. 2014;66: 14 30 11-10.

11

Farazi PA, Glickman J, Horner J, Depinho RA. Cooperative interactions of p53 mutation, telomere dysfunction, and chronic liver damage in hepatocellular carcinoma progression. Canc Res. 2006;66(9): 4766-4773.

12

Uehara T, Ainslie GR, Kutanzi K, et al. Molecular mechanisms of fibrosis-associated promotion of liver carcinogenesis. Toxicol Sci : Off J Soc Toxicol. 2013;132(1): 53-63.

13

Vitiello M, Zullo A, Servillo L, et al. Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases. Ageing Res Rev. 2017;35: 301-311.

14

Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006;124(2): 315-329.

15

Kanfi Y, Naiman S, Amir G, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388): 218-221.

16

Irminger-Finger I. Science of cancer and aging. J Clin Oncol : Off J Am Soc Cli Oncol. 2007;25(14): 1844-1851.

17

Sebastian C, Zwaans BM, Silberman DM, et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell. 2012;151(6): 1185-1199.

18

Kugel S, Feldman JL, Klein MA, et al. Identification of and molecular basis for SIRT6 loss-of-function point mutations in cancer. Cell Rep. 2015;13(3): 479-488.

19

Kugel S, Sebastian C, Fitamant J, et al. SIRT6 suppresses pancreatic cancer through control of Lin28b. Cell. 2016;165(6): 1401-1415.

20

Lerrer B, Cohen HY. The guardian: metabolic and tumour-suppressive effects of SIRT6. EMBO J. 2013;32(1): 7-8.

21

Kim HS, Xiao C, Wang RH, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metabol. 2010;12(3): 224-236.

22

Ka SO, Bang IH, Bae EJ, Park BH. Hepatocyte-specific sirtuin 6 deletion predisposes to nonalcoholic steatohepatitis by up-regulation of Bach1, an Nrf2 repressor. FASEB J: Off Publ Fed Am Soc Exp Biol. 2017;31(9): 3999-4010.

23

Vesselinovitch SD, Mihailovich N. Kinetics of diethylnitrosamine hepatocarcinogenesis in the infant mouse. Canc Res. 1983;43(9): 4253-4259.

24

Park TJ, Kim JY, Oh SP, et al. TIS21 negatively regulates hepatocarcinogenesis by disruption of cyclin B1-Forkhead box M1 regulation loop. Hepatology. 2008;47(5): 1533-1543.

25

Stowell RE, Lee CS, Tsuboi KK, Villasana A. Histochemical and microchemical changes in experimental cirrhosis and hepatoma formation in mice by carbon tetrachloride. Canc Res. 1951;11(5): 345-354.

26

Min L, He B, Hui L. Mitogen-activated protein kinases in hepatocellular carcinoma development. Semin Canc Biol. 2011;21(1): 10-20.

27

Liszt G, Ford E, Kurtev M, Guarente L. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem. 2005;280(22): 21313-21320.

28

Feng J, Yan PF, Zhao HY, Zhang FC, Zhao WH, Feng M. SIRT6 suppresses glioma cell growth via induction of apoptosis, inhibition of oxidative stress and suppression of JAK2/STAT3 signaling pathway activation. Oncol Rep. 2016;35(3): 1395-1402.

29

Geng CH, Zhang CL, Zhang JY, Gao P, He M, Li YL. Overexpression of Sirt6 is a novel biomarker of malignant human colon carcinoma. J Cell Biochem. 2018;119(5): 3957-3967.

30

Zhu B, Yan Y, Shao B, Tian L, Zhou W. Downregulation of SIRT6 is associated with poor prognosis in patients with non-small cell lung cancer. J Int Med Res. 2018;46(4): 1517-1527.

31

Ran LK, Chen Y, Zhang ZZ, et al. SIRT6 overexpression potentiates apoptosis evasion in hepatocellular carcinoma via BCL2-associated X protein-dependent apoptotic pathway. Clin Canc Res : Off J Am Assoc Cancer Res. 2016;22(13): 3372-3382.

32

Zhang ZG, Qin CY. Sirt6 suppresses hepatocellular carcinoma cell growth via inhibiting the extracellular signal regulated kinase signaling pathway. Mol Med Rep. 2014;9(3): 882-888.

33

Li Z, Xu K, Zhang N, et al. Overexpressed SIRT6 attenuates cisplatin-induced acute kidney injury by inhibiting ERK1/2 signaling. Kidney Int. 2018;93(4): 881-892.

34

Cea M, Cagnetta A, Adamia S, et al. Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood - J Am Soc Hematol. 2016;127(9): 1138-1150.

35

Kim E-J, Juhnn Y-S. Cyclic AMP signaling reduces sirtuin 6 expression in non-small cell lung cancer cells by promoting ubiquitin-proteasomal degradation via inhibition of the Raf-MEK-ERK (Raf/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase) pathway. J Biol Chem. 2015;290(15): 9604-9613.

36

Santos-Barriopedro I, Bosch-Presegue L, Marazuela-Duque A, et al. SIRT6-dependent cysteine monoubiquitination in the PRE-SET domain of Suv39h1 regulates the NF-kappaB pathway. Nat Commun. 2018;9(1): 101.

37

Han Z, Liu L, Liu Y, Li S. Sirtuin SIRT6 suppresses cell proliferation through inhibition of Twist1 expression in non-small cell lung cancer. Int J Clin Exp Pathol. 2014;7(8): 4774-4781.

38

Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117(7): 927-939.

39

Tang C, Liu P, Zhou Y, Jiang B, Song Y, Sheng L. Sirt6 deletion in hepatocytes increases insulin sensitivity of female mice by enhancing ERalpha expression. J Cell Physiol. 2019;234(10): 18615-18625.

40

Huang Z, Zhao J, Deng W, et al. Identification of a cellularly active SIRT6 allosteric activator. Nature Chemical Biology. 2018;14(12): 1118-1126.

Genes & Diseases
Pages 789-796
Cite this article:
Wang M, Lan L, Yang F, et al. Hepatic SIRT6 deficit promotes liver tumorigenesis in the mice models. Genes & Diseases, 2022, 9(3): 789-796. https://doi.org/10.1016/j.gendis.2020.08.007

362

Views

6

Downloads

5

Crossref

N/A

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 28 April 2020
Revised: 23 July 2020
Accepted: 24 August 2020
Published: 02 September 2020
© 2020, Chongqing Medical University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return