AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The mitophagy receptor FUN14 domain-containing 1 (FUNDC1): A promising biomarker and potential therapeutic target of human diseases

State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100864, PR China

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

Mitochondrial autophagy (mitophagy) is the selective clearance of damaged or incomplete mitochondria by autophagy, which is critical for the functional integrity of the entire mitochondrial network and cell survival. Because dysfunction of mitophagy is closely related to many diseases, it is important to study the specific molecular mechanism and pathophysiological significance of mitophagy. FUN14 domain-containing 1 (FUNDC1) is a newly identified mitochondrial outer membrane protein that induces receptor-mediated mitophagy by its interaction with LC3 during hypoxia. The expression, phosphorylation, regulation and significance of FUNDC1 are reviewed in the context of a large number of pathophysiological conditions. Emerging evidence has demonstrated that levels and phosphorylation states of FUNDC1 are closely related to occurrence, progression and prognosis of various diseases including heart diseases and cancers, indicating that FUNDC1 may serve as a promising biomarker and potential therapeutic target.

References

1

Wallace DC. Mitochondrial genetic medicine. Nat Genet. 2018;50(12): 1642-1649.

2

Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Phil Soc. 1966;41: 445-502.

3

Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biochim Biophys Acta. 2011;1807(12): 1507-1538.

4

Pickles S, Vigié P, Youle RJ. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr Biol. 2018;28(4): R170-R185.

5

Gustafsson ÅB, Dorn GW 2nd. Evolving and expanding the roles of mitophagy as a homeostatic and pathogenic process. Physiol Rev. 2019;99(1): 853-892.

6

Ney PA. Mitochondrial autophagy: Origins, significance, and role of BNIP3 and NIX. Biochim Biophys Acta. 2015;1853(10 Pt B): 2775-2783.

7

Zhang W, Chen C, Wang J, Liu L, He Y, Chen Q. Mitophagy in cardiomyocytes and in platelets: a major mechanism of cardioprotection against ischemia/reperfusion injury. Physiology (Bethesda). 2018;33(2): 86-98.

8

Zhang W, Ren H, Xu C, et al. Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. Elife. 2016;5, e21407.

9

Zhang W, Siraj S, Zhang R, Chen Q. Mitophagy receptor FUNDC1 regulates mitochondrial homeostasis and protects the heart from I/R injury. Autophagy. 2017;13(6): 1080-1081.

10

Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012;14(2): 177-185.

11

Gatica D, Lahiri V, Klionsky DJ. Cargo recognition and degradation by selective autophagy. Nat Cell Biol. 2018;20(3): 233-242.

12

Ohsumi Y. Historical landmarks of autophagy research. Cell Res. 2014;24(1): 9-23.

13

Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 2005;8(1): 3-5.

14

Sarraf SA, Youle RJ. Parkin mediates mitophagy during beige-to-white fat conversion. Sci Signal. 2018;11(527), eaat1082.

15

Pickrell AM, Youle RJ. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson's disease. Neuron. 2015;85(2): 257-273.

16

Shirihai OS, Song M, Dorn GWII. How mitochondrial dynamism orchestrates mitophagy. Circ Res. 2015;116(11): 1835-1849.

17

Schweers RL, Zhang J, Randall MS, et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci U S A. 2007;104(49): 19500-19505.

18

Murakawa T, Yamaguchi O, Hashimoto A, et al. Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun. 2015;6, e7527.

19

Bhujabal Z, Birgisdottir AB, Sjøttem E, et al. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep. 2017;18(6): 947-961.

20

Wei Y, Chiang WC, , Mishra P, Levine B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell. 2017;168(1-2): 224-238.

21

Lee SH, Lee S, Du J, et al. Mitochondrial MsrB2 serves as a switch and transducer for mitophagy. EMBO Mol Med. 2019;11(8), e10409.

22

Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1): 9-14.

23

Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7): 651-662.

24

Lazarou M, Sliter DA, Kane LA, et al. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature. 2015;524(7565): 309-314.

25

Kuang Y, Ma K, Zhou C, et al. Structural basis for the phosphorylation of FUNDC1 LIR as a molecular switch of mitophagy. Autophagy. 2016;12(12): 2363-2373.

26

Lv M, Wang C, Li F, et al. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Protein Cell. 2017;8(1): 25-38.

27

Chen G, Han Z, Feng D, et al. A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell. 2014;54(3): 362-377.

28

Wu W, Tian W, Hu Z, et al. ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 2014;15(5): 566-575.

29

Wu H, Xue D, Chen G, et al. The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy. Autophagy. 2014;10(10): 1712-1725.

30

Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell. 2012;148(1-2): 228-243.

31

Lee KH, Kang TB. The molecular links between cell death and inflammasome. Cells. 2019;8(9), e1057.

32

Anderson MA, Huang D, Roberts A. Targeting BCL2 for the treatment of lymphoid malignancies. Semin Hematol. 2014;51(3): 219-227.

33

Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol. 2008;9(1): 47-59.

34

McArthur K, Chappaz S, Kile BT. Apoptosis in megakaryocytes and platelets: the life and death of a lineage. Blood. 2018;131(6): 605-610.

35

Strasser A, Vaux DL. Viewing BCL2 and cell death control from an evolutionary perspective. Cell Death Differ. 2018;25(1): 13-20.

36

Wu S, Zou MH. Mitochondria-associated endoplasmic reticulum membranes in the heart. Arch Biochem Biophys. 2019;662: 201-212.

37

Wu S, Lu Q, Wang Q, et al. Binding of FUN14 domain containing 1 with inositol 1,4,5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in vivo. Circulation. 2017;136(23): 2248-2266.

38

Wu S, Lu Q, Ding Y, et al. Hyperglycemia-driven inhibition of AMP-activated protein kinase α2 induces diabetic cardiomyopathy by promoting mitochondria-associated endoplasmic reticulum membranes in vivo. Circulation. 2019;1399(16): 1913-1936.

39

Guo R, Zong S, Wu M, Gu J, Yang M. Architecture of human mitochondrial respiratory megacomplex I2III2IV2. Cell. 2017;170(6): 1247-1257.

40

Wang X, Zhang X, Wu D, et al. Mitochondrial flashes regulate ATP homeostasis in the heart. Elife. 2017;6, e23908.

41

Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ. 2018;25(6): 1080-1093.

42

Zhou H, Zhu P, Guo J, et al. Ripk3 induces mitochondrial apoptosis via inhibition of FUNDC1 mitophagy in cardiac IR injury. Redox Biol. 2017;13: 498-507.

43

Zhou H, Li D, Zhu P, et al. Melatonin suppresses platelet activation and function against cardiac ischemia/reperfusion injury via PPARγ/FUNDC1/mitophagy pathways. J Pineal Res. 2017;63, e12438.

44

Boengler K, Schlüter KD, Schermuly RT, Schulz R. Cardioprotection in right heart failure. Br J Pharmacol. 2020;177(23): 5413-5431.

45

Mitchell MB, Winter CB, Banerjee A, Harken AH. The relationship between ischemia-reperfusion injury, myocardial stunning and cardiac preconditioning. Surg Gynecol Obstet. 1993;177(1): 97-114.

46

Ippolito L, Giannoni E, Chiarugi P, Parri M. Mitochondrial redox hubs as promising targets for anticancer therapy. Front Oncol. 2020;10, e256.

47

Zhang T, Suo C, Zheng C, Zhang H. Hypoxia and metabolism in metastasis. Adv Exp Med Biol. 2019;1136: 87-95.

48

Ast T, Meisel JD, Patra S, et al. Hypoxia rescues frataxin loss by restoring iron sulfur cluster biogenesis. Cell. 2019;177(6): 1507-1521.

49

Sprenger HG, Langer T. The good and the bad of mitochondrial breakups. Trends Cell Biol. 2019;29(11): 888-900.

50

Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21(5): 268-283.

51

Chen Z, Liu L, Cheng Q, et al. Mitochondrial E3 ligase MARCH5 regulates FUNDC1 to fine-tune hypoxic mitophagy. EMBO Rep. 2017;18(3): 495-509.

52

Yuan Q, Sun N, Zheng J, et al. Prognostic and immunological role of FUN14 domain containing 1 in pan-cancer: friend or foe? Front Oncol. 2020;9, e1502.

53

Li W, Li Y, Siraj S, et al. FUN14 domain-containing 1-mediated mitophagy suppresses hepatocarcinogenesis by inhibition of inflammasome activation in mice. Hepatology. 2019;69(2): 604-621.

54

Wu L, Zhang D, Zhou L, et al. FUN14 domain-containing 1 promotes breast cancer proliferation and migration by activating calcium-NFATC1-BMI1 axis. EBioMedicine. 2019;41: 384-394.

55

Hou H, Er P, Cheng J, et al. High expression of FUNDC1 predicts poor prognostic outcomes and is a promising target to improve chemoradiotherapy effects in patients with cervical cancer. Cancer Med. 2017;6(8): 1871-1881.

56

Hui L, Wu H, Wang TW, Yang N, Guo X, Jang XJ. Hydrogen peroxide-induced mitophagy contributes to laryngeal cancer cells survival via the upregulation of FUNDC1. Clin Transl Oncol. 2019;21(5): 596-606.

57

Roperto S, Russo V, De Falco F, Rosati A, Catoi C, Roperto F. FUNDC1-mediated mitophagy in bovine papillomavirus-infected urothelial cells. Vet Microbiol. 2019;234: 51-60.

58

Yan M, Yu Y, Mao X, et al. Hydrogen gas inhalation attenuates sepsis-induced liver injury in a FUNDC1-dependent manner. Int Immunopharm. 2019;71: 61-67.

59

Cai Q, Jeong YY. Mitophagy in alzheimer's disease and other age-related neurodegenerative diseases. Cells. 2020;9(1), e150.

60

Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol. 2020;15: 235-259.

61

Paik DT, Cho S, Tian L, Chang HY, Wu JC. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol. 2020;17(8): 457-473.

62

Xie Q, Faust K, Van Ommeren R, Sheikh A, Djuric U, Diamandis P. Deep learning for image analysis: personalizing medicine closer to the point of care. Crit Rev Clin Lab Sci. 2019;56(1): 61-73.

63

Long KB, Young RM, Boesteanu AC, et al. CAR T cell therapy of non-hematopoietic malignancies: detours on the road to clinical success. Front Immunol. 2018;9, e2740.

64

Horwitz RI, Charlson ME, Singer BH. Medicine based evidence and personalized care of patients. Eur J Clin Invest. 2018;48, e12945.

65

Wang Q, Lv H, Lu L, Ren P, Li LJ. Neonatal hypoxic-ischemic encephalopathy: emerging therapeutic strategies based on pathophysiologic phases of the injury. Matern Fetal Neonatal Med. 2019;32(21): 3685-3692.

66

Sabbah HN. Targeting the mitochondria in heart failure: a translational perspective. JACC Basic Transl Sci. 2020;5(1): 88-106.

67

Chiarelli R, Martino C, Roccheri MC. Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators. Cell Stress Chaperones. 2019;24(4): 675-687.

68

Rogov VV, Suzuki H, Marinković M, et al. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Sci Rep. 2017;7(1), e1131.

69

Zhang W, Ma Q, Siraj S, et al. Nix-mediated mitophagy regulates platelet activation and life span. Blood Adv. 2019;3(15): 2342-2354.

Genes & Diseases
Pages 640-654
Cite this article:
Zhang W. The mitophagy receptor FUN14 domain-containing 1 (FUNDC1): A promising biomarker and potential therapeutic target of human diseases. Genes & Diseases, 2021, 8(5): 640-654. https://doi.org/10.1016/j.gendis.2020.08.011

314

Views

2

Downloads

36

Crossref

N/A

Web of Science

36

Scopus

0

CSCD

Altmetrics

Received: 28 April 2020
Revised: 22 August 2020
Accepted: 26 August 2020
Published: 02 September 2020
© 2020, Chongqing Medical University. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return