PDF (3.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Full Length Article | Open Access

Beclin-1/LC3-Ⅱ dependent macroautophagy was uninfluenced in ischemia-challenged vascular endothelial cells

Yaping Maa,1Chaofan Lib,1Yan Hec,d,1Tiwei FueLi SongaQingsong Yed,fFugui Zhangb,d()
Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, PR China
Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, PR China
Tianyou Hospital, Wuhan University of Science & Technology, Wuhan, Hubei 430064, PR China
Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, PR China
Center for Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China

Peer review under responsibility of Chongqing Medical University.

1 These authors made equal contributions to this study.

Show Author Information

Abstract

Autophagy has been extensively studied and occurs in many biological settings. However, a question remains as to whether ischemia enhances Beclin-1/LC3-Ⅱ-dependent macroautophagy in vascular endothelial cells, as has been previously thought. Furthermore, the effect of the level of autophagy on cell or skin flap survival still requires elucidation. We created a lethal ischemia model in human umbilical vascular endothelial cells (HUVECs), performed quantitative proteomics and bioinformatics analyses, and verified the autophagic status and effect both in vitro and in vivo. The significantly upregulated proteins encoded by autophagy-related genes (ATGs) included ATG2A, ATG3, ATG4B, ATG5, ATG7, ATG9A, ATG12, ATG16, and ATG101. The significantly enhanced lysosomal proteins were cathepsin B, cathepsin D, lysosome-associated membrane protein 1 (LAMP1), and LAMP2. However, the differentially expressed proteins excluded Beclin-1, microtubule-associated protein light chain 3 (LC3)-Ⅰ, and LC3-Ⅱ. Western blot analyses verified that the protein expression levels of Beclin-1, LC3-Ⅰ, and LC3-Ⅱ were neither upregulated nor downregulated in ischemia-challenged HUVECs. The autophagic status was not enhanced by rapamycin in ischemic HUVECs but appeared to be inhibited by chloroquine. Our in vivo study on rats showed that a downregulation in autophagic status jeopardized skin flap survival. In conclusion, Ischemia neither enhanced nor inhibited Beclin-1/LC3-Ⅱ-dependent canonical macroautophagy both in vitro and in vivo, in contradiction to previous studies. An appropriate autophagic homeostasis can minimize cell or skin flap damage.

References

1

Xue Z, Zhang Y, Liu Y, et al. PACAP neuropeptide promotes Hepatocellular Protection via CREB-KLF4 dependent autophagy in mouse liver Ischemia Reperfusion Injury. Theranostics. 2020;10(10):4453-4465.

2

Dash S, Aydin Y, Moroz K. Chaperone-mediated autophagy in the liver: good or bad? Cells. 2019;8(11):1308.

3

Rogg EM, Abplanalp WT, Bischof C, et al. Analysis of cell type-specific effects of MicroRNA-92a provides novel insights into target regulation and mechanism of action. Circulation. 2018;138(22):2545-2558.

4

Sachdev U, Cui X, Hong G, et al. High mobility group box 1 promotes endothelial cell angiogenic behavior in vitro and improves muscle perfusion in vivo in response to ischemic injury. J Vasc Surg. 2012;55(1):180-191.

5

Han F, Chen YX, Lu YM, et al. Regulation of the ischemia-induced autophagy-lysosome processes by nitrosative stress in endothelial cells. J Pineal Res. 2011;51(1):124-135.

6

Wang Y, Tao TQ, Song DD, Liu XH. Calreticulin ameliorates hypoxia/reoxygenation-induced human microvascular endothelial cell injury by inhibiting autophagy. Shock. 2018;49(1):108-116.

7

Zhu T, Yao Q, Wang W, Yao H, Chao J. iNOS induces vascular endothelial cell migration and apoptosis via autophagy in ischemia/reperfusion injury. Cell Physiol Biochem. 2016;38(4):1575-1588.

8

Wu H, Ding J, Li S, et al. Metformin promotes the survival of random-pattern skin flaps by inducing autophagy via the AMPK-mTOR-TFEB signaling pathway. Int J Biol Sci. 2019;15(2):325-340.

9

Chichger H, Rounds S, Harrington EO. Endosomes and autophagy: regulators of pulmonary endothelial cell homeostasis in health and disease. Antioxid Redox Signal. 2019;31(13):994-1008.

10

Xiong W, Liao Y, Qin JY, Li WH, Tang ZY. Adverse effects of chemoradiotherapy on invasion and metastasis of tumor cells. Genes Dis. 2020;7(3):351-358.

11

Li H, Gao A, Feng D, et al. Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury. Transl Stroke Res. 2014;5(5):618-626.

12

Bhogal RH, Weston CJ, Velduis S, et al. The reactive oxygen species-mitophagy signaling pathway regulates liver endothelial cell survival during ischemia/reperfusion injury. Liver Transpl. 2018;24(10):1437-1452.

13

Li Z, Li J, Tang N. Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience. 2017;354:1-10.

14

Shi W, Wei X, Wang Z, et al. HDAC9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury. J Cell Mol Med. 2016;20(6):1139-1149.

15

Tang Q, Cao Y, Xiong W, et al. Glycyrrhizic acid exerts protective effects against hypoxia/reoxygenation-induced human coronary artery endothelial cell damage by regulating mitochondria. Exp Ther Med. 2020;20(1):335-342.

16

Li WL, Yu SP, Chen D, et al. The regulatory role of NF-kappaB in autophagy-like cell death after focal cerebral ischemia in mice. Neuroscience. 2013;244:16-30.

17

Lin J, Lin R, Li S, et al. Salvianolic acid B promotes the survival of random-pattern skin flaps in rats by inducing autophagy. Front Pharmacol. 2018;9:1178.

18

Li J, Bao G, ALyafeai E, et al. Betulinic acid enhances the viability of random-pattern skin flaps by activating autophagy. Front Pharmacol. 2019;10:1017.

19

Lin R, Chen H, Callow D, et al. Multifaceted effects of astragaloside Ⅳ on promotion of random pattern skin flap survival in rats. Am J Transl Res. 2017;9(9):4161-4172.

20

Lin J, Lin R, Li S, et al. Protective effects of resveratrol on random-pattern skin flap survival: an experimental study. Am J Transl Res. 2019;11(1):379-392.

21

Chen Z, Zhang C, Ma H, et al. Detrimental effect of sitagliptin induced autophagy on multiterritory perforator flap survival. Front Pharmacol. 2020;11:951.

22

Wang L, Jin Z, Wang J, et al. Detrimental effect of Hypoxia-inducible factor-1alpha-induced autophagy on multiterritory perforator flap survival in rats. Sci Rep. 2017;7(1):11791.

23

Jun H, Lei D, Qifang Y, Yuan X, Deqin Y. Effects of concentrated growth factors on the angiogenic properties of dental pulp cells and endothelial cells: an in vitro study. Braz Oral Res. 2018;32:e48.

24

Zhang F, Li Y, Zhang H, et al. Anthelmintic mebendazole enhances cisplatin's effect on suppressing cell proliferation and promotes differentiation of head and neck squamous cell carcinoma (HNSCC). Oncotarget. 2017;8(8):12968-12982.

25

Song L, Gao LN, Wang J, et al. Stromal cell-derived factor-1 α alleviates calcium-sensing receptor activation-mediated ischemia/reperfusion injury by inhibiting caspase-3/caspase-9-induced cell apoptosis in rat free flaps. BioMed Res Int. 2018;2018:8945850.

26

McClung JM, McCord TJ, Keum S, et al. Skeletal muscle-specific genetic determinants contribute to the differential strain-dependent effects of hindlimb ischemia in mice. Am J Pathol. 2012;180(5):2156-2169.

27

Brodarac A, Saric T, Oberwallner B, et al. Susceptibility of murine induced pluripotent stem cell-derived cardiomyocytes to hypoxia and nutrient deprivation. Stem Cell Res Ther. 2015;6(1):83.

28

Mertins P, Tang LC, Krug K, et al. Reproducible workflow for multiplexed deep-scale proteome and phosphoproteome analysis of tumor tissues by liquid chromatography-mass spectrometry. Nat Protoc. 2018;13(7):1632-1661.

29

Bourassa S, Fournier F, Nehme B, et al. Evaluation of iTRAQ and SWATH-MS for the quantification of proteins associated with insulin resistance in human duodenal biopsy samples. PLoS One. 2015;10(5):e0125934.

30

Jylha A, Nattinen J, Aapola U, et al. Comparison of iTRAQ and SWATH in a clinical study with multiple time points. Clin Proteonomics. 2018;15:24.

31

Tekirdag K, Cuervo AM. Chaperone-mediated autophagy and endosomal microautophagy: Joint by a chaperone. J Biol Chem. 2018;293(15):5414-5424.

32

Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019;29(5):347-364.

33

Mathew B, Chennakesavalu M, Sharma M, et al. Autophagy and post-ischemic conditioning in retinal ischemia. Autophagy. 2021;17(6):1479-1499.

34

Choi ME. Autophagy in kidney disease. Annu Rev Physiol. 2020;82:297-322.

35

Guixe-Muntet S, de Mesquita FC, Vila S, et al. Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J Hepatol. 2017;66(1):86-94.

36

Chen S, Zhou C, Yu H, et al. 27-Hydroxycholesterol contributes to lysosomal membrane permeabilization-mediated pyroptosis in Co-cultured SH-SY5Y cells and C6 cells. Front Mol Neurosci. 2019;12:14.

37

Liu M, Pi H, Xi Y, et al. KIF5A-dependent axonal transport deficiency disrupts autophagic flux in trimethyltin chloride-induced neurotoxicity. Autophagy. 2021;17(4):903-924.

38

Pandey K, Yu XW, Steinmetz A, Alberini CM. Autophagy coupled to translation is required for long-term memory. Autophagy. 2021;17(7):1614-1635.

39

Yang B, Xue Q, Guo J, et al. Autophagy induction by the pathogen receptor NECTIN4 and sustained autophagy contribute to peste des petits ruminants virus infectivity. Autophagy. 2020;16(5):842-861.

40

Bian X, Bai Y, Su X, Zhao G, Sun G, Li D. Knockdown of periostin attenuates 5/6 nephrectomy-induced intrarenal renin-angiotensin system activation, fibrosis, and inflammation in rats. J Cell Physiol. 2019;234(12):22857-22873.

41

Liu Y, Li X, Jin A. Rapamycin inhibits Nf-KappaB activation by autophagy to reduce catabolism in human chondrocytes. J Invest Surg. 2020;33(9):861-873.

42

Cao Q, You X, Xu L, Wang L, Chen Y. PAQR3 suppresses the growth of non-small cell lung cancer cells via modulation of EGFR-mediated autophagy. Autophagy. 2020;16(7):1236-1247.

43

Zhao Y, Long Z, Ding Y, et al. Dihydroartemisinin ameliorates learning and memory in Alzheimer's disease through promoting autophagosome-lysosome fusion and autolysosomal degradation for Aβ clearance. Front Aging Neurosci. 2020;12:47.

44

Chen C, Liu L, Shu YQ, et al. Blockade of HCN2 channels provides neuroprotection against ischemic injury via accelerating autophagic degradation in hippocampal neurons. Neurosci Bull. 2020;36(8):875-894.

45

Li W, Li Y, Guan Y, et al. TNFAIP8L2/TIPE2 impairs autolysosome reformation via modulating the RAC1-MTORC1 axis. Autophagy. 2021;17(6):1410-1425.

46

Benito-Cuesta I, Ordonez-Gutierrez L, Wandosell F. AMPK activation does not enhance autophagy in neurons in contrast to MTORC1 inhibition: different impact on β-amyloid clearance. Autophagy. 2020:1-16.

47

Negoita F, Blomdahl J, Wasserstrom S, et al. PNPLA3 variant M148 causes resistance to starvation-mediated lipid droplet autophagy in human hepatocytes. J Cell Biochem. 2019;120(1):343-356.

48

Yang H, Shen H, Li J, Guo LW. SIGMAR1/Sigma-1 receptor ablation impairs autophagosome clearance. Autophagy. 2019;15(9):1539-1557.

49

Xie W, Zheng W, Liu M. BRF1 ameliorates LPS-induced inflammation through autophagy crosstalking with MAPK/ERK signaling. Genes Dis. 2018;5(3):226-234.

50

Pangare M, Makino A. Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Muscle Res. 2012;48(1):1-26.

51

Sharif T, Martell E, Dai C, Singh SK, Gujar S. Regulation of the proline regulatory axis and autophagy modulates stemness in TP73/p73 deficient cancer stem-like cells. Autophagy. 2019;15(5):934-936.

Genes & Diseases
Pages 549-561
Cite this article:
Ma Y, Li C, He Y, et al. Beclin-1/LC3-Ⅱ dependent macroautophagy was uninfluenced in ischemia-challenged vascular endothelial cells. Genes & Diseases, 2022, 9(2): 549-561. https://doi.org/10.1016/j.gendis.2021.02.010
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return