AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Pharmacological perspectives and molecular mechanisms of coumarin derivatives against virus disease

Zhoupeng Lia,1Dehui Kongb,1Yongsheng LiuaMingkai Lia,c( )
Department of Pharmacology & Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medical of the State Administration of Traditional Chinese Medicine, School of Pharmacy, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China
School of Nursing, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
Precision Pharmacy & Drug Development Center, The Fourth Military Medical University, Xi'an, Shanxi 710032, PR China

Peer review under responsibility of Chongqing Medical University.

1 Contribute equally to this work.

Show Author Information

Abstract

Infections caused by viruses are one of the foremost causes of morbidity and mortality in the world. Although a number of antiviral drugs are currently used for treatment of various kinds of viral infection diseases, there is still no available therapeutic agent for most of the viruses in clinical practice. Coumarin is a chemical compound which is found naturally in a variety of plants, it can also be synthetically produced possessing diverse biological effects. More recently, reports have highlighted the potential role of coumarin derivatives as antiviral agents. This review outlines the advances in coumarin-based compounds against various viruses including human immunodeficiency virus, hepatitis virus, herpes simplex virus, Chikungunya virus and Enterovirus 71, as well as the structure activity relationship and the possible mechanism of action of the most potent coumarin derivatives.

References

1

Abe T, Marutani Y, Shoji I. Cytosolic DNA-sensing immune response and viral infection. Microbiol Immunol. 2019;63(2): 51-64.

2

Paules CI, Marston HD, Fauci AS. Coronavirus infections-more than just the common cold. JAMA. 2020;323(8): 707-708.

3

De Clercq E, Li G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 2016;29(3): 695-747.

4

Rumlova M, Ruml T. In vitro methods for testing antiviral drugs. Biotechnol Adv. 2018;36(3): 557-576.

5

Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83(3): 770-803.

6

Ren QC, Gao C, Xu Z, et al. Bis-coumarin derivatives and their biological activities. Curr Top Med Chem. 2018;18(2): 101-113.

7

Hu Y, Chen W, Shen Y, Zhu B, Wang GX. Synthesis and antiviral activity of coumarin derivatives against infectious hematopoietic necrosis virus. Bioorg Med Chem Lett. 2019;29(14): 1749-1755.

8

Khomenko TM, Zarubaev VV, Orshanskaya IR, et al. Anti-influenza activity of monoterpene-containing substituted coumarins. Bioorg Med Chem Lett. 2017;27(13): 2920-2925.

9

De Luca L, Agharbaoui FE, Gitto R, et al. Rational design, synthesis and evaluation of coumarin derivatives as protein-protein interaction inhibitors. Mol Inform. 2016;35(8–9): 460-473.

10

Olomola TO, Klein R, Mautsa N, Sayed Y, Kaye PT. Synthesis and evaluation of coumarin derivatives as potential dual-action HIV-1 protease and reverse transcriptase inhibitors. Bioorg Med Chem. 2013;21(7): 1964-1971.

11

Guarner J. Human immunodeficiency virus: diagnostic approach. Semin Diagn Pathol. 2017;34(4): 318-324.

12

Parikh UM, McCormick K, van Zyl G, Mellors JW. Future technologies for monitoring HIV drug resistance and cure. Curr Opin HIV AIDS. 2017;12(2): 182-189.

13

Chimukangara B, Varyani B, Shamu T, et al. HIV drug resistance testing among patients failing second line antiretroviral therapy. Comparison of in-house and commercial sequencing. J Virol Methods. 2017;243: 151-157.

14

Waheed AA, Tachedjian G. Why do we need new drug classes for HIV treatment and prevention? Curr Top Med Chem. 2016;16(12): 1343-1349.

15

Laila U, Akram M, Shariati MA, et al. Role of medicinal plants in HIV/AIDS therapy. Clin Exp Pharmacol Physiol. 2019;46(12): 1063-1073.

16

Cesar GZ, Alfonso MG, Marius MM, et al. Inhibition of HIV-1 reverse transcriptase, toxicological and chemical profile of Calophyllum brasiliense extracts from Chiapas, Mexico. Fitoterapia. 2011;82(7): 1027-1034.

17

Eiznhamer DA, Creagh T, Ruckle JL, et al. Safety and pharmacokinetic profile of multiple escalating doses of (+)-calanolide A, a naturally occurring nonnucleoside reverse transcriptase inhibitor, in healthy HIV-negative volunteers. HIV Clin Trials. 2002;3(6): 435-450.

18

Butler MS. Natural products to drugs: natural product derived compounds in clinical trials. Nat Prod Rep. 2005;22(2): 162-195.

19

Xue H, Lu X, Zheng P, et al. Highly suppressing wild-type HIV-1 and Y181C mutant HIV-1 strains by 10-chloromethyl-11-demethyl-12-oxo-calanolide A with druggable profile. J Med Chem. 2010;53(3): 1397-1401.

20

Wu X, Zhang Q, Guo J, et al. Metabolism of F18, a derivative of calanolide A, in human liver microsomes and cytosol. Front Pharmacol. 2017;8: 479.

21

Lee TT, Kashiwada Y, Huang L, Snider J, Cosentino M, Lee KH. Suksdorfin: an anti-HIV principle from Lomatium suksdorfii, its structure-activity correlation with related coumarins, and synergistic effects with anti-AIDS nucleosides. Bioorg Med Chem. 1994;2(10): 1051-1056.

22

Yu D, Brossi A, Kilgore N, Wild C, Allaway G, Lee KH. Anti-HIV agents. Part 55: 3'R, 4'R-Di-(O)-(-)-camphanoyl-2', 2'-dimethyldihydropyrano[2, 3-f]chromone (DCP), a novel anti-HIV agent. Bioorg Med Chem Lett. 2003;13(9): 1575-1576.

23

Yang ZY, Xia Y, Xia P, Cosentino LM, Lee KH. Anti-AIDS agents. 31. Synthesis and anti-HIV activity of 4-substituted 3', 4'-di-O-(-)-camphanoyl-(+)-cis-khellactone (DCK) thiolactone analogs. Bioorg Med Chem Lett. 1998;8(12): 1483-1486.

24

Yang ZY, Xia Y, Xia P, Brossi A, Cosentino LM, Lee KH. Anti-AIDS agents part 41: synthesis and anti-HIV activity of 3', 4'-di-o-(-)-camphanoyl-(+)-cis-khellactone (DCK) lactam analogues. Bioorg Med Chem Lett. 2000;10(10): 1003-1005.

25

Xie L, Takeuchi Y, Cosentino LM, McPhail AT, Lee KH. Anti-AIDS agents. 42. Synthesis and anti-HIV activity of disubstituted (3'R, 4'R)-3', 4'-di-O-(S)-camphanoyl-(+)-cis-khellactone analogues. J Med Chem. 2001;44(5): 664-671.

26

Xie L, Takeuchi Y, Cosentino LM, Lee KH. Anti-AIDS agents. 37. Synthesis and structure-activity relationships of (3'R, 4'R)-(+)-cis-khellactone derivatives as novel potent anti-HIV agents. J Med Chem. 1999;42(14): 2662-2672.

27

Xie L, Takeuchi Y, Cosentino LM, Lee KH. Anti-AIDS agents. 33. Synthesis and anti-HIV activity of mono-methyl substituted 3', 4'-di-O-(-)-camphanoyl-(+)-cis-khellactone (DCK) analogues. Bioorg Med Chem Lett. 1998;8(16): 2151-2156.

28

Xie L, Allaway G, Wild C, Kilgore N, Lee KH. Anti-AIDS agents. Part 47: synthesis and anti-HIV activity of 3-substituted 3', 4'-Di-O-(S)-camphanoyl-(3'R, 4'R)-(+)-cis-khellactone derivatives. Bioorg Med Chem Lett. 2001;11(17): 2291-2293.

29

Huang L, Kashiwada Y, Cosentino LM, et al. Anti-AIDS agents. 15. Synthesis and anti-HIV activity of dihydroseselins and related analogs. J Med Chem. 1994;37(23): 3947-3955.

30

Huang L, Yuan X, Yu D, Lee KH, Chen CH. Mechanism of action and resistant profile of anti-HIV-1 coumarin derivatives. Virology. 2005;332(2): 623-628.

31

Xia P, Yin ZJ, Chen Y, et al. Anti-AIDS agents. Part 58: synthesis and anti-HIV activity of 1-thia-di-O-(-)-camphanoyl-(+)-cis-khellactone (1-thia-DCK) analogues. Bioorg Med Chem Lett. 2004;14(12): 3341-3343.

32

Yu D, Chen CH, Brossi A, Lee KH. Anti-AIDS agents. 60. Substituted 3'R, 4'R-di-O-(-)-camphanoyl-2', 2'-dimethyldihydropyrano[2, 3-f]chromone (DCP) analogues as potent anti-HIV agents. J Med Chem. 2004;47(16): 4072-4082.

33

Xie L, Yu D, Wild C, et al. Anti-AIDS agents. 52. Synthesis and anti-HIV activity of hydroxymethyl (3'R, 4'R)-3', 4'-di-O-(S)-camphanoyl-(+)-cis-khellactone derivatives. J Med Chem. 2004;47(3): 756-760.

34

Suzuki M, Li Y, Smith PC, et al. Anti-AIDS agents 65: investigation of the in vitro oxidative metabolism of 3', 4'-Di-O-(-)-camphanoyl-(+)-cis-khellactone derivatives as potent anti-hiv agents. Drug Metab Dispos. 2005;33(11): 1588-1592.

35

Chen Y, Zhang Q, Zhang B, et al. Anti-AIDS agents. Part 56: synthesis and anti-HIV activity of 7-thia-di-O-(-)-camphanoyl-(+)-cis-khellactone (7-thia-DCK) analogs. Bioorg Med Chem. 2004;12(24): 6383-6387.

36

Liu YP, Yan G, Guo JM, et al. Prenylated coumarins from the fruits of Manilkara zapota with potential anti-inflammatory effects and anti-HIV activities. J Agric Food Chem. 2019;67(43): 11942-11947.

37

Zhu M, Ma L, Wen J, et al. Rational design and Structure-Activity relationship of coumarin derivatives effective on HIV-1 protease and partially on HIV-1 reverse transcriptase. Eur J Med Chem. 2020;186: e111900.

38

Marquez N, Sancho R, Bedoya LM, et al. Mesuol, a natural occurring 4-phenylcoumarin, inhibits HIV-1 replication by targeting the NF-kappaB pathway. Antivir Res. 2005;66(2–3): 137-145.

39

Olmedo D, Sancho R, Bedoya LM, et al. 3-Phenylcoumarins as inhibitors of HIV-1 replication. Molecules. 2012;17(8): 9245-9257.

40

Kudo E, Taura M, Matsuda K, et al. Inhibition of HIV-1 replication by a tricyclic coumarin GUT-70 in acutely and chronically infected cells. Bioorg Med Chem Lett. 2013;23(3): 606-609.

41

Matsuda K, Hattori S, Kariya R, et al. Inhibition of HIV-1 entry by the tricyclic coumarin GUT-70 through the modification of membrane fluidity. Biochem Biophys Res Commun. 2015;457(3): 288-294.

42

Mao PC, Mouscadet JF, Leh H, Auclair C, Hsu LY. Chemical modification of coumarin dimer and HIV-1 integrase inhibitory activity. Chem Pharm Bull (Tokyo). 2002;50(12): 1634-1637.

43

Chiang CC, Mouscadet JF, Tsai HJ, Liu CT, Hsu LY. Synthesis and HIV-1 integrase inhibition of novel bis- or tetra-coumarin analogues. Chem Pharm Bull (Tokyo). 2007;55(12): 1740-1743.

44

Olomola TO, Mosebi S, Klein R, et al. Novel furocoumarins as potential HIV-1 integrase inhibitors. Bioorg Chem. 2014;57: 1-4.

45

Sharma S, Cermakova K, De Rijck J, et al. Affinity switching of the LEDGF/p75 IBD interactome is governed by kinase-dependent phosphorylation. Proc Natl Acad Sci U S A. 2018;115(30): E7053-E7062.

46

Esposito F, Ambrosio FA, Maleddu R, et al. Chromenone derivatives as a versatile scaffold with dual mode of inhibition of HIV-1 reverse transcriptase-associated Ribonuclease H function and integrase activity. Eur J Med Chem. 2019;182: 111617.

47

Sancho R, Marquez N, Gomez-Gonzalo M, et al. Imperatorin inhibits HIV-1 replication through an Sp1-dependent pathway. J Biol Chem. 2004;279(36): 37349-37359.

48

Deng M, Xie L, Zhong L, Liao Y, Liu L, Li X. Imperatorin: a review of its pharmacology, toxicity and pharmacokinetics. Eur J Pharmacol. 2020;879: 173124.

49

Lin PH, Ke YY, Su CT, et al. Inhibition of HIV-1 Tat-mediated transcription by a coumarin derivative, BPRHIV001, through the Akt pathway. J Virol. 2011;85(17): 9114-9126.

50

Shikishima Y, Takaishi Y, Honda G, et al. Chemical constituents of Prangos tschiniganica; structure elucidation and absolute configuration of coumarin and furanocoumarin derivatives with anti-HIV activity. Chem Pharm Bull (Tokyo). 2001;49(7): 877-880.

51

Lv L, Wang Q, Xu Y, et al. Vpr targets TET2 for degradation by CRL4(VprBP) E3 ligase to sustain IL-6 expression and enhance HIV-1 replication. Mol Cell. 2018;70(5): 961-970.

52

Wang Q, Su L. Vpr enhances HIV-1 env processing and virion infectivity in macrophages by modulating TET2-dependent IFITM3 expression. mBio. 2019;10(4): e01344-19.

53

Ong EB, Watanabe N, Saito A, et al. Vipirinin, a coumarin-based HIV-1 Vpr inhibitor, interacts with a hydrophobic region of VPR. J Biol Chem. 2011;286(16): 14049-14056.

54

Mahajan DH, Pannecouque C, De Clercq E, Chikhalia KH. Synthesis and studies of new 2-(coumarin-4-yloxy)-4, 6-(substituted)-S-triazine derivatives as potential anti-HIV agents. Arch Pharm (Weinheim). 2009;342(5): 281-290.

55

Fatma B, Kumar R, Singh VA, et al. Alphavirus capsid protease inhibitors as potential antiviral agents for Chikungunya infection. Antivir Res. 2020;179: 104808.

56

Weaver SC, Lecuit M. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med. 2015;372(13): 1231-1239.

57

Hwu JR, Kapoor M, Tsay SC, et al. Benzouracil-coumarin-arene conjugates as inhibiting agents for chikungunya virus. Antivir Res. 2015;118: 103-109.

58

Hwu JR, Huang WC, Lin SY, et al. Chikungunya virus inhibition by synthetic coumarin-guanosine conjugates. Eur J Med Chem. 2019;166: 136-143.

59

Gomez-Calderon C, Mesa-Castro C, Robledo S, et al. Antiviral effect of compounds derived from the seeds of Mammea americana and Tabernaemontana cymosa on Dengue and Chikungunya virus infections. BMC Compl Alternative Med. 2017;17(1): 57.

60

Zhong J, Xia Y, Hua L, et al. Functionalized selenium nanoparticles enhance the anti-EV71 activity of oseltamivir in human astrocytoma cell model. Artif Cells Nanomed Biotechnol. 2019;47(1): 3485-3491.

61

Zhou D, Zhao Y, Kotecha A, et al. Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nat Microbiol. 2019;4(3): 414-419.

62

Woodman A, Lee KM, Janissen R, et al. Predicting intraserotypic recombination in enterovirus 71. J Virol. 2019;93(4): e02057-18.

63

Wang B, Zhang H, Zhu M, Luo Z, Peng Y. MEK1-ERKs signal cascade is required for the replication of Enterovirus 71 (EV71). Antivir Res. 2012;93(1): 110-117.

64

Han S, Zhou V, Pan S, et al. Identification of coumarin derivatives as a novel class of allosteric MEK1 inhibitors. Bioorg Med Chem Lett. 2005;15(24): 5467-5473.

65

Sun J, Niu Y, Wang C, et al. Discovery of 3-benzyl-1, 3-benzoxazine-2, 4-dione analogues as allosteric mitogen-activated kinase kinase (MEK) inhibitors and anti-enterovirus 71 (EV71) agents. Bioorg Med Chem. 2016;24(16): 3472-3482.

66

Wang C, Zhang H, Xu F, et al. Substituted 3-benzylcoumarins as allosteric MEK1 inhibitors: design, synthesis and biological evaluation as antiviral agents. Molecules. 2013;18(5): 6057-6091.

67

Lanini S, Ustianowski A, Pisapia R, Zumla A, Ippolito G. Viral hepatitis: etiology, epidemiology, transmission, diagnostics, treatment, and prevention. Infect Dis Clin. 2019;33(4): 1045-1062.

68

Foster MA, Hofmeister MG, Kupronis BA, et al. Increase in hepatitis A virus infections - United States, 2013-2018. MMWR Morb Mortal Wkly Rep. 2019;68(18): 413-415.

69

Beer A, Holzmann H, Pischke S, et al. Chronic Hepatitis E is associated with cholangitis. Liver Int. 2019;39(10): 1876-1883.

70

Medvedev R, Ploen D, Hildt E. HCV and oxidative stress: implications for HCV life cycle and HCV-associated pathogenesis. Oxid Med Cell Longev. 2016;2016: 9012580.

71

Ahmed A, Felmlee DJ. Mechanisms of hepatitis C viral resistance to direct acting antivirals. Viruses. 2015;7(12): 6716-6729.

72

Zajac M, Muszalska I, Sobczak A, Dadej A, Tomczak S, Jelinska A. Hepatitis C - new drugs and treatment prospects. Eur J Med Chem. 2019;165: 225-249.

73

Hwu JR, Singha R, Hong SC, et al. Synthesis of new benzimidazole-coumarin conjugates as anti-hepatitis C virus agents. Antivir Res. 2008;77(2): 157-162.

74

Neyts J, De Clercq E, Singha R, et al. Structure-activity relationship of new anti-hepatitis C virus agents: heterobicycle-coumarin conjugates. J Med Chem. 2009;52(5): 1486-1490.

75

Hwu JR, Lin SY, Tsay SC, De Clercq E, Leyssen P, Neyts J. Coumarin-purine ribofuranoside conjugates as new agent against hepatitis C virus. J Med Chem. 2011;54(7): 2114-2126.

76

Tsay SC, Hwu JR, Singha R, et al. Coumarins hinged directly on benzimidazoles and their ribofuranosides to inhibit hepatitis C virus. Eur J Med Chem. 2013;63: 290-298.

77

Tsay SC, Lin SY, Huang WC, et al. Synthesis and structure-activity relationships of imidazole-coumarin conjugates against hepatitis C virus. Molecules. 2016;21(2): 228.

78

Liang TJ. Hepatitis B: the virus and disease. Hepatology. 2009;49(5 Suppl): S13-S21.

79

Takeuchi F, Ikeda S, Tsukamoto Y, et al. Screening for inhibitor of episomal DNA identified dicumarol as a hepatitis B virus inhibitor. PloS One. 2019;14(2): e0212233.

80

Zhang BY, Chai DP, Wu YH, et al. Potential drug targets against hepatitis B virus based on both virus and host factors. Curr Drug Targets. 2019;20(16): 1636-1651.

81

Huang RL, Chen CC, Huang YL, et al. Osthole increases glycosylation of hepatitis B surface antigen and suppresses the secretion of hepatitis B virus in vitro. Hepatology. 1996;24(3): 508-515.

82

Li LQ, Li J, Huang Y, et al. Lignans from the heartwood of Streblus asper and their inhibiting activities to hepatitis B virus. Fitoterapia. 2012;83(2): 303-309.

83

Su W, Zhao J, Yang M, et al. A coumarin lignanoid from the stems of Kadsura heteroclita. Bioorg Med Chem Lett. 2015;25(7): 1506-1508.

84

Xu B, Liu S, Fan XD, Deng LQ, Ma WH, Chen M. Two new coumarin glycosides from Herpetospermum caudigerum. J Asian Nat Prod Res. 2015;17(7): 738-743.

85

Huang SX, Mou JF, Luo Q, et al. Anti-hepatitis B virus activity of esculetin from microsorium fortunei in vitro and in vivo. Molecules. 2019;24(19): 3475.

86

Liu S, Zhou B, Valdes JD, Sun J, Guo H. Serum hepatitis B virus RNA: a new potential biomarker for chronic hepatitis B virus infection. Hepatology. 2019;69(4): 1816-1827.

87

Mohd-Ismail NK, Lim Z, Gunaratne J, Tan YJ. Mapping the interactions of HBV cccDNA with host factors. Int J Mol Sci. 2019;20(17): 4276.

88

Levrero M, Pollicino T, Petersen J, Belloni L, Raimondo G, Dandri M. Control of cccDNA function in hepatitis B virus infection. J Hepatol. 2009;51(3): 581-592.

89

Lloyd J, Copaciu R, Yahyabeik A, et al. Characterization of polyclonal antibodies to herpes simplex virus types 1 and 2. J Histotechnol. 2019;42(4): 202-214.

90

James C, Harfouche M, Welton NJ, et al. Herpes simplex virus: global infection prevalence and incidence estimates, 2016. Bull World Health Organ. 2020;98(5): 315-329.

91

Tian LW, Pei Y, Zhang YJ, Wang YF, Yang CR. 7-O-methylkaempferol and -quercetin glycosides from the whole plant of Nervilia fordii. J Nat Prod. 2009;72(6): 1057-1060.

92

Zavrsnik D, Muratovic S, Makuc D, et al. Benzylidene-bis-(4-hydroxycoumarin) and benzopyrano-coumarin derivatives: synthesis, (1)H/(1)(3)C-NMR conformational and X-ray crystal structure studies and in vitro antiviral activity evaluations. Molecules. 2011;16(7): 6023-6040.

93

Su F, Zhao Z, Ma S, et al. Cnidimonins A-C, three types of hybrid dimer from Cnidium monnieri: structural elucidation and semisynthesis. Org Lett. 2017;19(18): 4920-4923.

94

Rajtar B, Skalicka-Wozniak K, Swiatek L, Stec A, Boguszewska A, Polz-Dacewicz M. Antiviral effect of compounds derived from Angelica archangelica L. on Herpes simplex virus-1 and Coxsackievirus B3 infections. Food Chem Toxicol. 2017;109(Pt 2): 1026-1031.

95

Ghannadi A, Fattahian K, Shokoohinia Y, Behbahani M, Shahnoush A. Anti-viral evaluation of sesquiterpene coumarins from Ferula assa-foetida against HSV-1. Iran J Pharm Res (IJPR). 2014;13(2): 523-530.

96

Wittkowsky AK. Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. Semin Vasc Med. 2003;3(3): 221-230.

97

Feng D, Zhang A, Yang Y, Yang P. Coumarin-containing hybrids and their antibacterial activities. Arch Pharm (Weinheim). 2020;353(6): e1900380.

98

Guillon CD, Jan YH, Foster N, et al. Synthetically modified methoxsalen for enhanced cytotoxicity in light and dark reactions. Bioorg Med Chem Lett. 2019;29(4): 619-622.

99

Tanaka Y, Fujii W, Hori H, Kitagawa Y, Ozaki K. Relationship between coumarin-induced hepatocellular toxicity and mitochondrial function in rats. Food Chem Toxicol. 2016;90: 1-9.

100

Guo PJ, Lin ZJ, Zhang XM, Zou LN, Guo FF, Zhang B. [Toxicological research and safety consideration of coumarins]. Zhongguo Zhongyao Zazhi. 2020;45(3): 518-522.

Genes & Diseases
Pages 80-94
Cite this article:
Li Z, Kong D, Liu Y, et al. Pharmacological perspectives and molecular mechanisms of coumarin derivatives against virus disease. Genes & Diseases, 2022, 9(1): 80-94. https://doi.org/10.1016/j.gendis.2021.03.007

337

Views

4

Downloads

30

Crossref

29

Web of Science

27

Scopus

0

CSCD

Altmetrics

Received: 09 January 2021
Revised: 26 March 2021
Accepted: 31 March 2021
Published: 20 April 2021
© 2021, Chongqing Medical University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return