AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The pseudogenes of eukaryotic translation elongation factors (EEFs): Role in cancer and other human diseases

R&D Division, Prestige, 18 via Vecchia, Terranuova Bracciolini, AR 52028, Italy
Show Author Information

Abstract

The eukaryotic translation elongation factors (EEFs), i.e. EEF1A1, EEF1A2, EEF1B2, EEF1D, EEF1G, EEF1E1 and EEF2, are coding-genes that play a central role in the elongation step of translation but are often altered in cancer. Less investigated are their pseudogenes. Recently, it was demonstrated that pseudogenes have a key regulatory role in the cell, especially via non-coding RNAs, and that the aberrant expression of ncRNAs has an important role in cancer development and progression. The present review paper, for the first time, collects all that published about the EEFs pseudogenes to create a base for future investigations. For most of them, the studies are in their infancy, while for others the studies suggest their involvement in normal cell physiology but also in various human diseases. However, more investigations are needed to understand their functions in both normal and cancer cells and to define which can be useful biomarkers or therapeutic targets.

References

1

Cristiano L. Translation elongation factors: are useful biomarkers in cancer? Open Access J Biog Sci Res. 2020;6(1): 1-7.

2

Chan JJ, Tay Y. Noncoding RNA: RNA regulatory networks in cancer. Int J Mol Sci. 2018;19(5): 1310.

3
Poliseno L, Marranci A, Pandolfi PP. Pseudogenes in human cancer. Front Med. 2015: 2: 68.
4

Kim MS, Pinto SM, Getnet D, et al. A draft map of the human proteome. Nature. 2014;509(7502): 575-581.

5

Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414): 101-108.

6

Poliseno L. Pseudogenes: newly discovered players in human cancer. Sci Signal. 2012;5(242): re5.

7

Chan WL, Chang JG. Pseudogene-derived endogenous siRNAs and their function. Methods Mol Biol. 2014;1167: 227-239.

8

Hu X, Yang L, Mo YY. Role of pseudogenes in tumorigenesis. Cancers (Basel). 2018;10(8): 256.

9

An Y, Furber KL, Ji S. Pseudogenes regulate parental gene expression via ceRNA network. J Cell Mol Med. 2018;21(1): 185-192.

10

Xiao-Jie L, Ai-Mei G, Li-Juan J, Jiang X. Pseudogene in cancer: real functions and promising signature. J Med Genet. 2015;52(1): 17-24.

11

Kalyana-Sundaram S, Kumar-Sinha C, Shankar S, et al. Expressed pseudogenes in the transcriptional landscape of human cancers. Cell. 2012;149(7): 1622-1634.

12

Savtchenko ES, Schiff TA, Jiang CK, Freedberg IM, Blumenberg M. Embryonic expression of the human 40-kD keratin: evidence from a processed pseudogene sequence. Am J Hum Genet. 1988;43(5): 630-637.

13

Cooke S, Shlien A, Marshall J, et al. Processed pseudogenes acquired somatically during cancer development. Nat Commun. 2014;5: 3644.

14

Kovalenko TF, Patrushev LI. Pseudogenes as functionally significant elements of the genome. Biochemistry (Mosc). 2018;83(11): 1332-1349.

15

Grandér D, Johnsson P. Pseudogene-expressed RNAs: emerging roles in gene regulation and disease. Curr Top Microbiol Immunol. 2016;394: 111-126.

16

Johnsson P, Morris KV, Grandér D. Pseudogenes: a novel source of trans-acting antisense RNAs. Methods Mol Biol. 2014;1167: 213-226.

17

Pei BK, Sisu C, Frankish A, et al. The GENCODE pseudogene resource. Genome Biol. 2012;13(9): R51.

18

Huret JL, Ahmad M, Arsaban M, et al. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res. 2013;41(D1): D920-D924.

19

Sasikumar AN, Perez WB, Kinzy TG. The many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscipl Rev RNA. 2012;3(4): 543-555.

20

Tao Y, Fang P, Kim S, Guo M, Young NL, Marshall AG. Mapping the contact surfaces in the Lamin A: AIMP3 complex by hydrogen/deuterium exchange FT-ICR mass spectrometry. PLoS One. 2017;12(8): e0181869.

21

Quevillon S, Mirande M. The p18 component of the multisynthetase complex shares a protein motif with the beta and gamma subunits of eukaryotic elongation factor 1. FEBS Lett. 1996;395(1): 63-67.

22

Ejiri S. Moonlighting functions of polypeptide elongation factor 1: from actin bundling to zinc finger protein R1-associated nuclear localization. Biosci Biotechnol Biochem. 2002;66(1): 1-21.

23

Hassan MK, Kumar D, Naik M, Dixit M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One. 2018;13(1): e0191377.

24

Chambers DM, Rouleau GA, Abbott CM. Comparative genomic analysis of genes encoding translation elongation factor 1B(alpha) in human and mouse shows EEF1B1 to be a recent retrotransposition event. Genomics. 2001;77(3): 145-148.

25

von der Kammer H, Klaudiny J, Zimmer M, Scheit KH. Human elongation factor 1 beta: cDNA and derived amino acid sequence. Biochem Biophys Res Commun. 1991;177(1): 312-317.

26

Baty F, Joerger M, Früh M, Klingbiel D, Zappa F, Brutsche M. 24h-gene variation effect of combined bevacizumab/erlotinib in advanced non-squamous non-small cell lung cancer using exon array blood profiling. J Transl Med. 2017;15(1): 66.

27

Vanwetswinkel S, Kriek J, Andersen GR, et al. Solution structure of the 162 residue C-terminal domain of human elongation factor 1Bgamma. J Biol Chem. 2003;278(44): 43443-43451.

28

Pizzuti A, Gennarelli M, Novelli G, et al. Human elongation factor EF-1 beta: cloning and characterization of the EF1 beta 5a gene and assignment of EF-1 beta isoforms to chromosomes 2, 5, 15 and X. Biochem Biophys Res Commun. 1993;197(1): 154-162.

29

Chapman AR, Lee DF, Cai W, et al. Correlated gene modules uncovered by single-cell transcriptomics with high detectability and accuracy. BioRxiv. 2020: e892190.

30

Zhou J, Quah JY, Ng Y, et al. ASLAN003, a potent dihydroorotate dehydrogenase inhibitor for differentiation of acute myeloid leukemia. Haematologica. 2020;105(9): 2286-2297.

31

Süt BB. Data article on genes that share similar expression patterns with EEF1 complex proteins in hepatocellular carcinoma. Data Brief. 2020;29: 105162.

32

Díez-Fuertes F, De La Torre-Tarazona HE, Calonge E, et al. Transcriptome sequencing of peripheral blood mononuclear cells from elite controller-long term non progressors. Sci Rep. 2019;9(1): 14265.

33

Burton PR, Clayton DG, Cardon LR, et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145): 661-678.

34

Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507): 1304-1351.

35

Kimura K, Wakamatsu A, Suzuki Y, et al. Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res. 2006;16(1): 55-65.

36

Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437(7062): 1173-1178.

37

Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, et al. The cancer genome atlas pan-cancer analysis project. Nat Genet. 2013;45(10): 1113-1120.

38

Erho N, Buerki C, Triche TJ, Davicioni E, Vergara IA. Transcriptome-wide detection of differentially expressed coding and non-coding transcripts and their clinical significance in prostate cancer. J Oncol. 2012: 2012 541353.

39

Fimereli D, Fumagalli D, Brown D, et al. Genomic hotspots but few recurrent fusion genes in breast cancer. Genes Chromosomes Cancer. 2018;57(7): 331-338.

40

Alaei-Mahabadi B, Bhadury J, Karlsson JW, Nilsson JA, Larsson E. Global analysis of somatic structural genomic alterations and their impact on gene expression in diverse human cancers. Proc Natl Acad Sci U S A. 2016;113(48): 13768-13773.

41

Babiceanu M, Qin F, Xie Z, et al. Recurrent chimeric fusion RNAs in non-cancer tissues and cells. Nucleic Acids Res. 2016;44(6): 2859-2872.

42

Kim J, Kim S, Ko S, et al. Recurrent fusion transcripts detected by whole-transcriptome sequencing of 120 primary breast cancer samples. Genes Chromosomes Cancer. 2015;54(11): 681-691.

43

Shahba S, Jafari Shakib R, Jamshidi A, et al. Association study of copy number variation in BMP8A gene with the risk of ankylosing spondylitis in Iranian population. J Cell Biochem. 2018;120(5): 8359-8365.

44

Yim SH, Jung SH, Chung B, Chung YJ. Clinical implications of copy number variations in autoimmune disorders. Kor J Intern Med. 2015;30(3): 294-304.

45

Jung SH, Yim SH, Hu HJ, et al. Genome-wide copy number variation analysis identifies deletion variants associated with ankylosing spondylitis. Arthritis Rheum. 2014;66(8): 2103-2112.

46

Sanger Center. Genome Sequencing Center. Toward a complete human genome sequence. Genome Res. 1998;8(11): 1097-1108.

47

Stefansson OA, Jonasson JG, Olafsdottir K, et al. Genomic and phenotypic analysis of BRCA2 mutated breast cancers reveals co-occurring changes linked to progression. Breast Cancer Res. 2011;13(5): R95.

48

Lv H, Zhang M, Shang Z, et al. Genome-wide haplotype association study identify the FGFR2 gene as a risk gene for acute myeloid leukemia. Oncotarget. 2017;8(5): 7891-7899.

49

Ombrello MJ, Arthur VL, Remmers EF, et al. Genetic architecture distinguishes systemic juvenile idiopathic arthritis from other forms of juvenile idiopathic arthritis: clinical and therapeutic implications. Ann Rheum Dis. 2017;76(5): 906-913.

50

Tao F, Beecham GW, Rebelo AP, et al. Modifier gene candidates in charcot-marie-tooth disease type 1a: a case-only genome-wide association study. J Neuromuscul Dis. 2019;6(2): 201-211.

51

Muzny DM, Scherer SE, Kaul R, et al. The DNA sequence, annotation and analysis of human chromosome 3. Nature. 2006;440(7088): 1194-1198.

52

International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004;431(7011): 931-945.

53

Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822): 860-921.

54

van der Harst P, Verweij N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ Res. 2018;122(3): 433-443.

55

Cristiano L. EEF1B2 (eukaryotic translation elongation factor 1 beta 2). Genet Cytogenet Oncol Haematol. 2020;24(9): 338-345.

56

Le Sourd F, Boulben S, Le Bouffant R, et al. eEF1B: at the dawn of the 21st century. Biochim Biophys Acta. 2006;1759(1–2): 13-31.

57

Browne GJ, Proud CG. Regulation of peptide-chain elongation in mammalian cells. Eur J Biochem. 2002;269(22): 5360-5368.

58

Cristiano L. EEF1D (eukaryotic translation elongation factor 1 delta). Genet Cytogenet Oncol Haematol. 2020;24(3): 117-135.

59

Dunham A, Matthews LH, Burton J, et al. The DNA sequence and analysis of human chromosome 13. Nature. 2004;428(6982): 522-528.

60

Cristiano L. EEF1DP3 (eukaryotic translation elongation factor 1 delta pseudogene 3). Genet Cytogenet Oncol Haematol. 2020;24(4): 164-169.

61

Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12(8): R72.

62

Mansilla F, Friis I, Jadidi M, Nielsen KM, Clark BF, Knudsen CR. Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system. Biochem J. 2002;365(Pt 3): 669-676.

63

Cristiano L. EEF1G (eukaryotic translation elongation factor 1 gamma). Atlas Genet Cytogenet Oncol Haematol. 2020;24(2): 58-68.

64

Mao M, Fu G, Wu JS, et al. Identification of genes expressed in human CD34(+) hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning. Proc Natl Acad Sci U S A. 1998;95(14): 8175-8180.

65

Deineko V. On ARS-interacting multifunctional protein p18. Nat Prec. 2008.

66

Kim SM, Jeon Y, Kim D, et al. AIMP3 depletion causes genome instability and loss of stemness in mouse embryonic stem cells. Cell Death Dis. 2018;9(10): 972.

67

Park BJ, Oh YS, Park SY, et al. AIMP3 haploinsufficiency disrupts oncogene-induced p53 activation and genomic stability. Cancer Res. 2006;66(14): 6913-6918.

68

Park BJ, Kang JW, Lee SW, et al. The haploinsufficient tumor suppressor p18 upregulates p53 via interactions with ATM/ATR. Cell. 2005;120(2): 209-221.

69

Kim SS, Hur SY, Kim YR, Yoo NJ, Lee SH. Expression of AIMP1, 2 and 3, the scaffolds for the multi-tRNA synthetase complex, is downregulated in gastric and colorectal cancer. Tumori. 2011;97(3): 380-385.

70

Lund A, Knudsen SM, Vissing H, Clark B, Tommerup N. Assignment of human elongation factor 1 alpha genes: EEF1A maps to chromosome 6q14 and EEF1A2 to 20q13.3. Genomics. 1996;36(2): 359-361.

71

Madsen HO, Poulsen K, Dahl O, Clark BF, Hjorth JP. Retropseudogenes constitute the major part of the human elongation factor 1 alpha gene family. Nucleic Acids Res. 1990;18(6): 1513-1516.

72

Hattori M, Fujiyama A, Taylor TD, et al. The DNA sequence of human chromosome 21. Nature. 2000;405(6784): 311-319.

73

Acharya P, Kutum R, Pandey R, et al. First degree relatives of patients with celiac disease harbour an intestinal transcriptomic signature that might protect them from enterocyte damage. Clin Transl Gastroenterol. 2018;9(10): 195.

74

Vincent-Chong VK, Salahshourifar I, Razali R, Anwar A, Zain RB. Immortalization of epithelial cells in oral carcinogenesis as revealed by genome-wide array comparative genomic hybridization: a meta-analysis. Head Neck. 2015;38(Suppl 1): E783-E797.

75

Liu F, Xing L, Zhang X, Zhang X. A four-pseudogene classifier identified by machine learning serves as a novel prognostic marker for survival of osteosarcoma. Genes (Basel). 2019;10(6): 414.

76

Bonaldo MF, Yu MT, Jelenc P, et al. Selection of cDNAs using chromosome-specific genomic clones: application to human chromosome 13. Hum Mol Genet. 1994;3(9): 1663-1673.

77

Carnes MU, Allingham RR, Ashley-Koch A, Hauser MA. Transcriptome analysis of adult and fetal trabecular meshwork, cornea, and ciliary body tissues by RNA sequencing. Exp Eye Res. 2018;167: 91-99.

78

Mirsafian H, Ripen AM, Manaharan T, Mohamad SB, Merican AF. Toward a reference gene catalog of human primary monocytes. OMICS. 2016;20(11): 627-634.

79

Pieragostino D, Agnifili L, Fasanella V, et al. Shotgun proteomics reveals specific modulated protein patterns in tears of patients with primary open angle glaucoma naïve to therapy. Mol Biosyst. 2013;9(6): 1108-1116.

80

de Mateo S, Castillo J, Estanyol JM, Ballescà JL, Oliva R. Proteomic characterization of the human sperm nucleus. Proteomics. 2011;11(13): 2714-2726.

81

Buschow SI, van Balkom BW, Aalberts M, Heck AJ, Wauben M, Stoorvogel W. MHC class Ⅱ-associated proteins in B-cell exosomes and potential functional implications for exosome biogenesis. Immunol Cell Biol. 2010;88(8): 851-856.

82

Zhang W, Du M, Wang T, et al. Long non-coding RNA LINC01133 mediates nasopharyngeal carcinoma tumorigenesis by binding to YBX1. Am J Cancer Res. 2019;9(4): 779-790.

83

Ojha NK, Lole KS. Hepatitis E virus ORF1 encoded non structural protein-host protein interaction network. Virus Res. 2016;213: 195-204.

84

Evgrafov OV, Armoskus C, Wrobel BB, et al. Gene expression in patient-derived neural progenitors implicates WNT5A signaling in the etiology of schizophrenia. Biol Psychiatr. 2020;88(3): 236-247.

85

Gruber F, Keats JJ, McBride K, et al. Bayesian network models of multiple myeloma: drivers of high risk and durable response. Blood. 2016;128(22): 4406.

86

Elaine Hardman W, Primerano DA, Legenza MT, Morgan J, Fan J, Denvir J. mRNA expression data in breast cancers before and after consumption of walnut by women. Data Brief. 2019;25: 104050.

87

Lin Y-Y, Gawronski A, Hach F, et al. Computational identification of micro-structural variations and their proteogenomic consequences in cancer. Bioinformatics. 2018;34(10): 1672-1681.

88

Fan M, Pfeffer SR, Lynch HT, et al. Altered transcriptome signature of phenotypically normal skin fibroblasts heterozygous for CDKN2A in familial melanoma: relevance to early intervention. Oncotarget. 2013;4(1): 128-141.

89

Ha MJ, Baladandayuthapani V, Do KA. Prognostic gene signature identification using causal structure learning: applications in kidney cancer. Canc Inf. 2015;14(Suppl 1): 23-35.

90

Wang Y, Liu X, Guan G, Xiao Z, Zhao W, Zhuang M. Identification of a five-pseudogene signature for predicting survival and its ceRNA network in glioma. Front Oncol. 2019;9: 1059.

91

Wu W, Sui J, Liu T, et al. Integrated analysis of two-lncRNA signature as a potential prognostic biomarker in cervical cancer: a study based on public database. Peer J. 2019;7: e6761.

92

Stobbe G, Liu Y, Wu R, Hudgings LH, Thompson O, Hisama FM. Diagnostic yield of array comparative genomic hybridization in adults with autism spectrum disorders. Genet Med. 2014;16(1): 70-77.

93

Ran D, Daye ZJ. Gene expression variability and the analysis of large-scale RNA-seq studies with the MDSeq. Nucleic Acids Res. 2017;45(13): e127.

94

Cakir MV, Wirth H, Hopp L, Binder H. MicroRNA expression landscapes in stem cells, tissues, and cancer. Methods Mol Biol. 2014;1107: 279-302.

95

Xiao D, Zhang SM, Li X, et al. IL-1B rs1143623 and EEF1A1P11-RPL7P9 rs10783050 polymorphisms affect the glucose-lowing efficacy of metformin in Chinese overweight or obese Type 2 diabetes mellitus patients. Pharmacogenomics. 2015;16(14): 1621-1629.

96

Wittkowski KM, Sonakya V, Song T, Seybold MP, Keddache M, Durner M. From single-SNP to wide-locus: genome-wide association studies identifying functionally related genes and intragenic regions in small sample studies. Pharmacogenomics. 2013;14(4): 391-401.

97

Audere M, Rutka K, Inaskina I, et al. Genetic linkage studies of a North Carolina macular dystrophy family. Medicina. 2016;52(3): 180-186.

98

van Soest S, van Rossem MJ, Heckenlively JR, et al. Integrated genetic and physical map of the 1q31–>q32.1 region, encompassing the RP12 locus, the F13B and HF1 genes, and the EEF1AL11 and RPL30 pseudogenes. Cytogenet Cell Genet. 1999;84(1–2): 22-27.

99

Comuzzie AG, Cole SA, Laston SL, et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population. PLoS One. 2012;7(12): e51954.

100

Rodrigues-Peres RM, de S Carvalho B, Anurag M, et al. Copy number alterations associated with clinical features in an underrepresented population with breast cancer. Mol Genet Genom Med. 2019;7(7): e00750.

101

Abed S, Baghaei K, Pakzad P, Hashemi M, Zali MR. Evaluation of epithelial-mesenchymal transition genes involved in iranian gastric cancer patients via transcriptome analysis. Int J Canc Manag. 2019;12(12): e94924.

102

Tian H, Cong P, Qi R, et al. Decreased invasion ability of hypotaurine synthesis deficient glioma cells was partially due to hypomethylation of Wnt5a promoter. Biocell. 2017;41: 27-32.

103

Lai KP, Li JW, Chan TF, et al. Transcriptomic and methylomic analysis reveal the toxicological effect of 2, 3, 7, 8-Tetrachlorodibenzodioxin on human embryonic stem cell. Chemosphere. 2018;206: 663-673.

104

Balsano C, Porcu C, Sideri S, Tavolaro S. Fat and hepatocellular carcinoma. Hepatoma Res. 2018;4: 38.

105

Kato N. Insights into the genetic basis of type 2 diabetes. J Diabetes Invest. 2013;4(3): 233-244.

106

Ng SB, Chung TH, Kato S, et al. Epstein-Barr virus-associated primary nodal T/NK-cell lymphoma shows a distinct molecular signature and copy number changes. Haematol. 2018;103(2): 278-287.

107

Tutar L, Özgür A, Tutar Y. Involvement of miRNAs and pseudogenes in cancer. Methods Mol Biol. 2018;1699: 45-66.

108

Jorge P, Garcia E, Gonçalves A, et al. Classical fragile-X phenotype in a female infant disclosed by comprehensive genomic studies. BMC Med Genet. 2018;19(1): 74.

109

Lucas RE, Vlangos CN, Das P, Patel PI, Elsea SH. Genomic organisation of the approximately 1.5 Mb Smith-Magenis syndrome critical interval: transcription map, genomic contig, and candidate gene analysis. Eur J Hum Genet. 2001;9(12): 892-902.

110

Taylor TD, Noguchi H, Totoki Y, et al. Human chromosome 11 DNA sequence and analysis including novel gene identification. Nature. 2006;440(7083): 497-500.

111

Dick DM, Aliev F, Krueger RF, et al. Genome-wide association study of conduct disorder symptomatology. Mol Psychiatr. 2011;16(8): 800-808.

112

Takahashi K, Tatsumi N, Fukami T, Yokoi T, Nakajima M. Integrated analysis of rifampicin-induced microRNA and gene expression changes in human hepatocytes. Drug Metabol Pharmacokinet. 2014;29(4): 333-340.

113

Mansilla F, Hansen LL, Jakobsen H, Kjeldgaard NO, Clark BF, Knudsen CR. Deconstructing PTI-1: PTI-1 is a truncated, but not mutated, form of translation elongation factor 1A1, eEF1A1. Biochim Biophys Acta. 2005;727(2): 116-124.

114

Choi WI, Kim Y, Kim Y, et al. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A). Cell Physiol Biochem. 2009;23(4–6): 359-370.

115

Abbott CM, Proud CG. Translation factors: in sickness and in health. Trends Biochem Sci. 2004;29(1): 25-31.

116

Soares-Schanoski A, Baptista Cruz N, de Castro-Jorge LA, et al. Systems analysis of subjects acutely infected with the Chikungunya virus. PLoS Pathog. 2019;15(6): e1007880.

117

Lee M, Surh YJ. eEF1A2 as a putative oncogene. Ann N Y Acad Sci. 2009;1171: 87-93.

118

McDonell L, Drouin G. The abundance of processed pseudogenes derived from glycolytic genes is correlated with their expression level. Genome. 2012;55(2): 147-151.

119

Hirotsune S, Yoshida N, Chen A, et al. An expressed pseudogene regulates the messenger-RNA stability of its homologous coding gene. Nature. 2003;423(6935): 91-96.

Genes & Diseases
Pages 941-958
Cite this article:
Cristiano L. The pseudogenes of eukaryotic translation elongation factors (EEFs): Role in cancer and other human diseases. Genes & Diseases, 2022, 9(4): 941-958. https://doi.org/10.1016/j.gendis.2021.03.009

294

Views

3

Downloads

19

Crossref

18

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 11 November 2020
Accepted: 29 March 2021
Published: 16 April 2021
© 2021, Chongqing Medical University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return