AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (739.1 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

LncRNA KCNQ1OT1: Molecular mechanisms and pathogenic roles in human diseases

Fangqi XiaaYaqi WangaMengzhen XueaLeiqi ZhuaDengke JiaaYue ShiaYan GaoaLuoying LiaYuanyang LiaSilong ChenaGuangfu XuaDing Yuana,b( )Chengfu Yuana,b,c( )
College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, Hubei 443002, PR China
Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, PR China
Show Author Information

Abstract

Long non-coding RNAs (lncRNAs) exhibit a length more than 200 nucleotides and they are characterized by non-coding RNAs (ncRNA) not encoded into proteins. Over the past few years, the role and development of lncRNAs have aroused the rising attention of researchers. To be specific, KCNQ1OT1, the KCNQ1 opposite strand/antisense transcript 1, is clearly classified as a regulatory ncRNA. KCNQ1OT1 is capable of interacting with miRNAs, RNAs and proteins, thereby affecting gene expression and various cell functions (e.g., cell proliferation, migration, epithelial–mesenchymal transition (EMT), apoptosis, viability, autophagy and inflammation). KCNQ1OT1 is dysregulated in a wide range of human diseases (e.g., cardiovascular disease, cancer, diabetes, osteoarthritis, osteoporosis and cataract), and it is speculated to act as a therapeutic target for treating various human diseases. On the whole, this review aims to explore the biological functions, underlying mechanisms and pathogenic roles of KCNQ1OT1 in human diseases.

References

1

Clark MB, Choudhary A, Smith MA, Taft RJ, Mattick JS. The dark matter rises: the expanding world of regulatory RNAs. Essays Biochem. 2013;54: 1-16.

2

Jathar S, Kumar V, Srivastava J, Tripathi V. Technological developments in lncRNA biology. Adv Exp Med Biol. 2017;1008: 283-323.

3

Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113): 1435-1439.

4

Qian X, Zhao J, Yeung PY, Zhang QC, Kwok CK. Revealing lncRNA structures and interactions by sequencing-based approaches. Trends Biochem Sci. 2019;44(1): 33-52.

5

Yang L, Froberg JE, Lee JT. Long noncoding RNAs: fresh perspectives into the RNA world. Trends Biochem Sci. 2014;39(1): 35-43.

6

Vance KW, Ponting CP. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet. 2014;30(8): 348-355.

7

Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA. Genomics Proteomics Bioinformatics. 2017;15(3): 177-186.

8

Wang C, Wang L, Ding Y, et al. LncRNA sstructural characteristics in epigenetic regulation. Int J Mol Sci. 2017;18(12): 2659.

9

Long Y, Wang X, Youmans DT, Cech TR. How do lncRNAs regulate transcription? Science Adv. 2017;3(9): eaao2110.

10

Zhang X, Wang W, Zhu W, et al. Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci. 2019;20(22): 5573.

11

Shi X, Sun M, Liu H, Yao Y, Song Y. Long non-coding RNAs: a new frontier in the study of human diseases. Cancer Lett. 2013;339(2): 159-166.

12

Mitsuya K, Meguro M, Lee MP, et al. LIT1, an imprinted antisense RNA in the human KvLQT1 locus identified by screening for differentially expressed transcripts using monochromosomal hybrids. Hum Mol Genet. 1999;8(7): 1209-1217.

13
Shuman C, Beckwith JB, Weksberg R. Beckwith-Wiedemann syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al., eds. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993-2021.
14

Du M, Zhou W, Beatty LG, Weksberg R, Sadowski PD. The KCNQ1OT1 promoter, a key regulator of genomic imprinting in human chromosome 11p15.5. Genomics. 2004;84(2): 288-300.

15

Pandey RR, Mondal T, Mohammad F, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32(2): 232-246.

16

Mohammad F, Pandey RR, Nagano T, et al. Kcnq1ot1/Lit1 noncoding RNA mediates transcriptional silencing by targeting to the perinucleolar region. Mol Cell Biol. 2008;28(11): 3713-3728.

17

Bliek J, Maas SM, Ruijter JM, et al. Increased tumour risk for BWS patients correlates with aberrant H19 and not KCNQ1OT1 methylation: occurrence of KCNQ1OT1 hypomethylation in familial cases of BWS. Hum Mol Genet. 2001;10(5): 467-476.

18

Redrup L, Branco MR, Perdeaux ER, et al. The long noncoding RNA Kcnq1ot1 organises a lineage-specific nuclear domain for epigenetic gene silencing. Development. 2009;136(4): 525-530.

19

Basile V, Baruffaldi F, Dolfini D, et al. NF-YA splice variants have different roles on muscle differentiation. Biochim Biophys Acta. 2016;1859(4): 627-638.

20

Sunamura N, Ohira T, Kataoka M, et al. Regulation of functional KCNQ1OT1 lncRNA by beta-catenin. Sci Rep. 2016;6: e20690.

21

Ma AJ, Zhou MG, Zeng XY, Dong Z. [Current status and changes of disease burden of cardio-cerebrovascular diseases in 1990 and 2016 for Beijing people]. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48(3): 244-249.

22

Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res. 2014;115(7): 668-677.

23

Wang Y, Yang X, Jiang A, Wang W, Li J, Wen J. Methylation-dependent transcriptional repression of RUNX3 by KCNQ1OT1 regulates mouse cardiac microvascular endothelial cell viability and inflammatory response following myocardial infarction. FASEB J. 2019;33(12): 13145-13160.

24

Arslan S, Berkan Ö, Lalem T, et al. Long non-coding RNAs in the atherosclerotic plaque. Atherosclerosis. 2017;266: 176-181.

25

Yu XH, Deng WY, Chen JJ, et al. LncRNA kcnq1ot1 promotes lipid accumulation and accelerates atherosclerosis via functioning as a ceRNA through the miR-452-3p/HDAC3/ABCA1 axis. Cell Death Dis. 2020;11(12): 1043.

26

Li X, Dai Y, Yan S, et al. Down-regulation of lncRNA KCNQ1OT1 protects against myocardial ischemia/reperfusion injury following acute myocardial infarction. Biochem Biophys Res Commun. 2017;491(4): 1026-1033.

27

Rong J, Pan H, He J, et al. Long non-coding RNA KCNQ1OT1/microRNA-204-5p/LGALS3 axis regulates myocardial ischemia/reperfusion injury in mice. Cell Signal. 2020;66: 109441.

28

Shen C, Kong B, Liu Y, et al. YY1-induced upregulation of lncRNA KCNQ1OT1 regulates angiotensin Ⅱ-induced atrial fibrillation by modulating miR-384b/CACNA1C axis. Biochem Biophys Res Commun. 2018;505(1): 134-140.

29

Zhang Y, Zhang L, Wang Y, et al. KCNQ1OT1, HIF1A-AS2 and APOA1-AS are promising novel biomarkers for diagnosis of coronary artery disease. Clin Exp Pharmacol Physiol. 2019;46(7): 635-642.

30

Lai L, Xu Y, Kang L, Yang J, Zhu G. LncRNA KCNQ1OT1 contributes to cardiomyocyte apoptosis by targeting FUS in heart failure. Exp Mol Pathol. 2020;115: 104480.

31

, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke. 1993;24(1): 35-41.

32

Yu S, Yu M, He X, Wen L, Bu Z, Feng J. KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell. 2019;18(3): 12940.

33

Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends-an update. Cancer Epidemiol Biomarkers Prev. 2016;25(1): 16-27.

34

Hulvat MC. Cancer incidence and trends. Surg Clin North Am. 2020;100(3): 469-481.

35

Hansen J. Common cancers in the elderly. Drugs Aging. 1998;13(6): 467-478.

36

Chen QH, Li B, Liu DG, Zhang B, Yang X, Tu YL. LncRNA KCNQ1OT1 sponges miR-15a to promote immune evasion and malignant progression of prostate cancer via up-regulating PD-L1. Cancer Cell Int. 2020;20: 394.

37

Feng W, Wang C, Liang C, et al. The dysregulated expression of KCNQ1OT1 and its interaction with downstream factors miR-145/CCNE2 in breast cancer cells. Cell Physiol Biochem. 2018;49(2): 432-446.

38

Wu Y, Bi QJ, Han R, Zhang Y. Long noncoding RNA KCNQ1OT1 is correlated with human breast cancer cell development through inverse regulation of hsa-miR-107. Biochem Cell Biol. 2020;98(3): 338-344.

39

Zhang Z, Weaver DL, Olsen D, et al. Long non-coding RNA chromogenic in situ hybridisation signal pattern correlation with breast tumour pathology. J Clin Pathol. 2016;69(1): 76-81.

40

Shen B, Li Y, Ye Q, Qin Y. YY1-mediated long non-coding RNA Kcnq1ot1 promotes the tumor progression by regulating PTEN via DNMT1 in triple negative breast cancer. Cancer Gene Ther. 2021;28(10): 1099-1112.

41

Zhang Z, Qian W, Wang S, et al. Analysis of lncRNA-associated ceRNA network reveals potential lncRNA biomarkers in human colon adenocarcinoma. Cell Physiol Biochem. 2018;49(5): 1778-1791.

42

Wang WJ, Li HT, Yu JP, et al. A competing endogenous RNA network reveals novel potential lncRNA, miRNA, and mRNA biomarkers in the prognosis of human colon adenocarcinoma. J Surg Res. 2019;235: 22-33.

43

Li Y, Li C, Li D, Yang L, Jin J, Zhang B. lncRNA KCNQ1OT1 enhances the chemoresistance of oxaliplatin in colon cancer by targeting the miR-34a/ATG4B pathway. Onco Targets Ther. 2019;12: 2649-2660.

44

Zhang K, Yan J, Yi B, Rui Y, Hu H. High KCNQ1OT1 expression might independently predict shorter survival of colon adenocarcinoma. Future Oncol. 2019;15(10): 1085-1095.

45

Qi X, Lin Y, Liu X, Chen J, Shen B. Biomarker discovery for the carcinogenic heterogeneity between colon and rectal cancers based on lncRNA-associated ceRNA network analysis. Front Oncol. 2020;10: 535985.

46

Maffi P, Secchi A. The burden of diabetes: emerging data. Dev Ophthalmol. 2017;60: 1-5.

47

Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: a review of current evidence. Diabetologia. 2019;62(1): 3-16.

48

Galaviz KI, Weber MB, Straus A, Haw JS, Narayan KMV, Ali MK. Global diabetes prevention interventions: a systematic review and network meta-analysis of the real-world impact on incidence, weight, and glucose. Diabetes Care. 2018;41(7): 1526-1534.

49

Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008;88(11): 1254-1264.

50

Meneilly GS, Tessier D. Diabetes in elderly adults. J Gerontol Biol SMed Sci. 2001;56(1): M5-M13.

51

Yang F, Qin Y, Lv J, et al. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy. Cell Death Dis. 2018;9(10): 1000.

52

Yang F, Qin Y, Wang Y, et al. LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy. Cell Physiol Biochem. 2018;50(4): 1230-1244.

53

Zhang L, Long J, Jiang W, et al. Trends in chronic kidney disease in China. N Engl J Med. 2016;375(9): 905-906.

54

Zhu B, Cheng X, Jiang Y, et al. Silencing of KCNQ1OT1 decreases oxidative stress and pyroptosis of renal tubular epithelial cells. Diabetes Metab Syndr Obes. 2020;13: 365-375.

55

Jie R, Zhu P, Zhong J, Zhang Y, Wu H. LncRNA KCNQ1OT1 affects cell proliferation, apoptosis and fibrosis through regulating miR-18b-5p/SORBS2 axis and NF-κB pathway in diabetic nephropathy. Diabetol Metab Syndr. 2020;12: 77.

56

Li J, Li M, Bai L. KCNQ1OT1/miR-18b/HMGA2 axis regulates high glucose-induced proliferation, oxidative stress, and extracellular matrix accumulation in mesangial cells. Mol Cell Biochem. 2021;476(1): 321-331.

57

Henriques J, Vaz-Pereira S, Nascimento J, Rosa PC. [Diabetic eye disease]. Acta Med Port. 2015;28(1): 107-113.

58

Shao J, Pan X, Yin X, et al. KCNQ1OT1 affects the progression of diabetic retinopathy by regulating miR-1470 and epidermal growth factor receptor. J Cell Physiol. 2019;234(10): 17269-17279.

59

Zhang Y, Song Z, Li X, et al. Long noncoding RNA KCNQ1OT1 induces pyroptosis in diabetic corneal endothelial keratopathy. Am J Physiol Cell Physiol. 2020;318(2): C346-C359.

60

Liu J, Dong Y, Wen Y, et al. LncRNA KCNQ1OT1 knockdown inhibits viability, migration and epithelial-mesenchymal transition in human lens epithelial cells via miR-26a-5p/ITGAV/TGF-beta/Smad3 axis. Exp Eye Res. 2020;200: 108251.

61

Srivastava M, Deal C. Osteoporosis in elderly: prevention and treatment. Clin Geriatr Med. 2002;18(3): 529-555.

62

Wang CG, Liao Z, Xiao H, et al. LncRNA KCNQ1OT1 promoted BMP2 expression to regulate osteogenic differentiation by sponging miRNA-214. Exp Mol Pathol. 2019;107: 77-84.

63

Qadir A, Liang S, Wu Z, Chen Z, Hu L, Qian A. Senile osteoporosis: the involvement of differentiation and senescence of bone marrow stromal cells. Int J Mol Sci. 2020;21(1): 349.

64

Fei Q, Li X, Lin J, Yu L, Yang Y. Identification of aberrantly expressed long non-coding RNAs and nearby targeted genes in male osteoporosis. Clin Interv Aging. 2020;15: 1779-1792.

65

Zhang K, Shi Z, Ren Y, Han X, Wang J, Hong W. [Kcnq1ot1 promotes osteogenic differentiation and suppresses osteoclast differentiation]. Nan Fang Yi Ke Da Xue Xue Bao. 2021;41(1): 31-38.

66

Pereira D, Ramos E, Branco J. Osteoarthritis. Acta Med Port. 2015;28(1): 99-106.

67

Mandl LA. Osteoarthritis year in review 2018: clinical. Osteoarthritis Cartilage. 2019;27(3): 359-364.

68

Hawker GA. Osteoarthritis is a serious disease. Clin Exp Rheumatol. 2019;37 Suppl 120(5): 3-6.

69

Liu C, Gao J, Su G, Xiang Y, Wan L. MicroRNA-1202 plays a vital role in osteoarthritis via KCNQ1OT1 has-miR-1202-ETS1 regulatory pathway. J Orthop Surg Res. 2020;15(1): 130.

70

Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S. Age-related cataract. Lancet. 2005;365(9459): 599-609.

71

Jin X, Jin H, Shi Y, Guo Y, Zhang H. Long non-coding RNA KCNQ1OT1 promotes cataractogenesis via miR-214 and activation of the Caspase-1 pathway. Cell Physiol Biochem. 2017;42(1): 295-305.

72

Chen B, Ma J, Li C, Wang Y. Long noncoding RNA KCNQ1OT1 promotes proliferation and epithelial-mesenchymal transition by regulation of SMAD4 expression in lens epithelial cells. Mol Med Rep. 2018;18(1): 16-24.

73

Yao L, Yang L, Song H, Liu T, Yan H. MicroRNA miR-29c-3p modulates FOS expression to repress EMT and cell proliferation while induces apoptosis in TGF-β2-treated lens epithelial cells regulated by lncRNA KCNQ1OT1. Biomed Pharmacother. 2020;129: 110290.

74

Huang Y. The novel regulatory role of lncRNA-miRNA-mRNA axis in cardiovascular diseases. J Cell Mol Med. 2018;22(12): 5768-5775.

75

Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011;147(2): 358-369.

76

Milligan L, Decourty L, Saveanu C, et al. A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol. 2008;28(17): 5446-5457.

77

Carroll KL, Ghirlando R, Ames JM, Corden JL. Interaction of yeast RNA-binding proteins Nrd1 and Nab3 with RNA polymerase Ⅱ terminator elements. RNA. 2007;13(3): 361-373.

78

Houseley J, Kotovic K, El Hage A, Tollervey D. Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control. EMBO J. 2007;26(24): 4996-5006.

79

Liu X, Fu R, Pan Y, Meza-Sosa KF, Zhang Z, Lieberman J. PNPT1 release from mitochondria during apoptosis triggers decay of poly(A) RNAs. Cell. 2018;174(1): 187-201.e12.

Genes & Diseases
Pages 1556-1565
Cite this article:
Xia F, Wang Y, Xue M, et al. LncRNA KCNQ1OT1: Molecular mechanisms and pathogenic roles in human diseases. Genes & Diseases, 2022, 9(6): 1556-1565. https://doi.org/10.1016/j.gendis.2021.07.003

385

Views

3

Downloads

14

Crossref

11

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 11 April 2021
Revised: 13 June 2021
Accepted: 28 July 2021
Published: 16 August 2021
© 2021, Chongqing Medical University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return