AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

SPINOPHILIN: A multiplayer tumor suppressor

Eva M. Verdugo-Sivianesa,bAmancio Carneroa,b,( )
Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville 41013, Spain
CIBERONC, Instituto de Salud Carlos Ⅲ, Madrid 28029, Spain

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

SPINOPHILIN (SPN, PPP1R9B or NEURABIN-2) is a multifunctional protein that regulates protein–protein interactions in different cell signaling pathways. SPN is also one of the regulatory subunits of protein phosphatase 1 (PP1), implicated in the dephosphorylation of retinoblastoma protein (pRB) during cell cycle. The SPN gene has been described as a tumor suppressor in different human tumor contexts, in which low levels of SPN are correlated with a higher grade and worse prognosis. In addition, mutations of the SPN protein have been reported in human tumors. Recently, an oncogenic mutation of SPN, A566V, was described, which affects both the SPN–PP1 interaction and the phosphatase activity of the holoenzyme, and promotes p53-dependent tumorigenesis by increasing the cancer stem cell (CSC) pool in breast tumors. Thus, the loss or mutation of SPN could be late events that promotes tumor progression by increasing the CSC pool and, eventually, the malignant behavior of the tumor.

References

1

Allen PB, Ouimet CC, Greengard P. Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc Natl Acad Sci USA. 1997;94(18):9956-9961.

2

Satoh A, Nakanishi H, Obaishi H, et al. Neurabin-Ⅱ/spinophilin. An actin filament-binding protein with one pdz domain localized at cadherin-based cell-cell adhesion sites. J Biol Chem. 1998;273(6):3470-3475.

3

Carnero A. Spinophilin: a new tumor suppressor at 17q21. Curr Mol Med. 2012;12(5):528-535.

4

Sarrouilhe D, di Tommaso A, Métayé T, et al. Spinophilin: from partners to functions. Biochimie. 2006;88(9):1099-1113.

5

Caduff RF, Svoboda-Newman SM, Ferguson AW, et al. Comparison of alterations of chromosome 17 in carcinoma of the ovary and of the breast. Virchows Arch. 1999;434(6):517-522.

6

Smith SA, Easton DF, Ford D, et al. Genetic heterogeneity and localization of a familial breast-ovarian cancer gene on chromosome 17q12-Q21. Am J Hum Genet. 1993;52(4):767-776.

7

Cohen BB, Porter DE, Wallace MR, et al. Linkage of a major breast cancer gene to chromosome 17q12-21:results from 15 Edinburgh families. Am J Hum Genet. 1993;52(4):723-729.

8

Porter DE, Cohen BB, Wallace MR, et al. Breast cancer incidence, penetrance and survival in probable carriers of BRCA1 gene mutation in families linked to BRCA1 on chromosome 17q12-21. Br J Surg. 2005;81(10):1512-1515.

9

Porter DE, Steel CM, Cohen BB, et al. Genetic linkage analysis applied to unaffected women from families with breast cancer can discriminate high- from low-risk individuals. Br J Surg. 1993;80(11):1381-1385.

10

Easton DF, Bishop DT, Ford D, et al. Genetic linkage analysis in familial breast and ovarian cancer: results from 214 families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1993;52(4):678-701.

11

Abujiang P, Mori TJ, Takahashi T, et al. Loss of heterozygosity (LOH) at 17q and 14q in human lung cancers. Oncogene. 1998;17(23):3029-3033.

12

Barnes AP, , VanDongen HM, et al. The identification of a second actin-binding region in spinophilin/neurabin Ⅱ. Brain Res Mol Brain Res. 2004;124(2):105-113.

13

Grossman SD, Futter M, Snyder GL, et al. Spinophilin is phosphorylated by Ca2+/calmodulin-dependent protein kinase Ⅱ resulting in regulation of its binding to F-actin. J Neurochem. 2004;90(2):317-324.

14

Futter M, Uematsu K, Bullock SA, et al. Phosphorylation of spinophilin by ERK and cyclin-dependent PK 5 (Cdk5). Proc Natl Acad Sci USA. 2005;102(9):3489-3494.

15

Hsieh-Wilson LC, Benfenati F, Snyder GL, et al. Phosphorylation of spinophilin modulates its interaction with actin filaments. J Biol Chem. 2003;278(2):1186-1194.

16

Vivo M, Calogero RA, Sansone F, et al. The human tumor suppressor arf interacts with spinophilin/neurabin Ⅱ, a type 1 protein-phosphatase-binding protein. J Biol Chem. 2001;276(17):14161-14169.

17

Wera S, Hemmings BA. Serine/threonine protein phosphatases. Biochem J. 1995;311(Pt 1):17-29.

18
EgloffMPJohnsonDFMoorheadGStructural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1EMBO J19971681876188710.1093/emboj/16.8.1876

Egloff MP, Johnson DF, Moorhead G, et al. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 1997;16(8):1876-1887.

19

Rebelo S, Santos M, Martins F, et al. Protein phosphatase 1 is a key player in nuclear events. Cell Signal. 2015;27(12):2589-2598.

20

Cohen PT, Brewis ND, Hughes V, et al. Protein serine/threonine phosphatases; an expanding family. FEBS Lett. 1990;268(2):355-359.

21

Dancheck B, Ragusa MJ, Allaire M, et al. Molecular investigations of the structure and function of the protein phosphatase 1-spinophilin-inhibitor 2 heterotrimeric complex. Biochemistry. 2011;50(7):1238-1246.

22

Peti W, Nairn AC, Page R. Structural basis for protein phosphatase 1 regulation and specificity. FEBS J. 2013;280(2):596-611.

23

Nelson DA, Krucher NA, Ludlow JW. High molecular weight protein phosphatase type 1 dephosphorylates the retinoblastoma protein. J Biol Chem. 1997;272(7):4528-4535.

24

Sasaki K, Shima H, Kitagawa Y, et al. Identification of members of the protein phosphatase 1 gene family in the rat and enhanced expression of protein phosphatase 1 alpha gene in rat hepatocellular carcinomas. Jpn J Cancer Res. 1990;81(12):1272-1280.

25

Berndt N. Protein dephosphorylation and the intracellular control of the cell number. Front Biosci. 1999;4:D22-D42.

26

Terry-Lorenzo RT, Carmody LC, Voltz JW, et al. The neuronal actin-binding proteins, neurabin I and neurabin Ⅱ, recruit specific isoforms of protein phosphatase-1 catalytic subunits. J Biol Chem. 2002;277(31):27716-27724.

27

Hirschi A, Cecchini M, Steinhardt RC, et al. An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein. Nat Struct Mol Biol. 2010;17(9):1051-1057.

28

MacMillan LB, Bass MA, Cheng N, et al. Brain actin-associated protein phosphatase 1 holoenzymes containing spinophilin, neurabin, and selected catalytic subunit isoforms. J Biol Chem. 1999;274(50):35845-35854.

29

Ragusa MJ, Dancheck B, Critton DA, et al. Spinophilin directs protein phosphatase 1 specificity by blocking substrate binding sites. Nat Struct Mol Biol. 2010;17(4):459-464.

30

Ragusa MJ, Allaire M, Nairn AC, et al. Flexibility in the PP1:spinophilin holoenzyme. FEBS Lett. 2011;585(1):36-40.

31

Heroes E, Lesage B, Görnemann J, et al. The PP1 binding code: a molecular-lego strategy that governs specificity. FEBS J. 2013;280(2):584-595.

32

Hsieh-Wilson LC, Allen PB, Watanabe T, et al. Characterization of the neuronal targeting protein spinophilin and its interactions with protein phosphatase-1. Biochemistry. 1999;38(14):4365-4373.

33

Verdugo-Sivianes EM, Rojas AM, Muñoz-Galván S, et al. Mutation of SPINOPHILIN (PPP1R9B) found in human tumors promotes the tumorigenic and stemness properties of cells. Theranostics. 2021;11(7):3452-3471.

34

Terry-Lorenzo RT, Elliot E, Weiser DC, et al. Neurabins recruit protein phosphatase-1 and inhibitor-2 to the actin cytoskeleton. J Biol Chem. 2002;277(48):46535-46543.

35

Bielas SL, Serneo FF, Chechlacz M, et al. Spinophilin facilitates dephosphorylation of doublecortin by PP1 to mediate microtubule bundling at the axonal wrist. Cell. 2007;129(3):579-591.

36

Tsukada M, Prokscha A, Ungewickell E, et al. Doublecortin association with actin filaments is regulated by neurabin Ⅱ. J Biol Chem. 2005;280(12):11361-11368.

37

Tsukada M, Prokscha A, Oldekamp J, et al. Identification of neurabin Ⅱ as a novel doublecortin interacting protein. Mech Dev. 2003;120(9):1033-1043.

38

Shmueli A, Gdalyahu A, Sapoznik S, et al. Site-specific dephosphorylation of doublecortin (DCX) by protein phosphatase 1 (PP1). Mol Cell Neurosci. 2006;32(1–2):15-26.

39

Tsukada M, Prokscha A, Eichele G. Neurabin Ⅱ mediates doublecortin-dephosphorylation on actin filaments. Biochem Biophys Res Commun. 2006;343(3):839-847.

40

Giannakis M, Stappenbeck TS, Mills JC, et al. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem. 2006;281(16):11292-11300.

41

Cao Z, Weygant N, Chandrakesan P, et al. Tuft and cancer stem cell marker DCLK1:a new target to enhance anti-tumor immunity in the tumor microenvironment. Cancers (Basel). 2020;12(12):E3801.

42

Ali N, Nguyen CB, Chandrakesan P, et al. Doublecortin-like kinase 1 promotes hepatocyte clonogenicity and oncogenic programming via non-canonical β-catenin-dependent mechanism. Sci Rep. 2020;10(1):10578.

43

Maruno T, Fukuda A, Goto N, et al. Visualization of stem cell activity in pancreatic cancer expansion by direct lineage tracing with live imaging. Elife. 2021;10:e55117.

44

Kang XL, He LR, Chen YL, et al. Role of doublecortin-like kinase 1 and leucine-rich repeat-containing G-protein-coupled receptor 5 in patients with stage Ⅱ/Ⅲ colorectal cancer: cancer progression and prognosis. World J Gastroenterol. 2020;26(43):6853-6866.

45

Zhang L, Zhou S, Guo E, et al. DCLK1 inhibition attenuates tumorigenesis and improves chemosensitivity in esophageal squamous cell carcinoma by inhibiting β-catenin/c-Myc signaling. Pflügers Arch Eur J Physiol. 2020;472(8):1041-1049.

46

Buchsbaum RJ, Connolly BA, Feig LA. Regulation of p70 S6 kinase by complex formation between the Rac guanine nucleotide exchange factor (Rac-GEF) Tiam1 and the scaffold spinophilin. J Biol Chem. 2003;278(21):18833-18841.

47

Lundberg AS, Weinberg RA. Control of the cell cycle and apoptosis. Eur J Cancer. 1999;35(14):1886-1894.

48

Vermeulen K, van Bockstaele DR, Berneman ZN. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003;36(3):131-149.

49

di Fiore R, D'Anneo A, Tesoriere G, et al. RB1 in cancer: different mechanisms of RB1 inactivation and alterations of pRb pathway in tumorigenesis. J Cell Physiol. 2013;228(8):1676-1687.

50

Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell. 2002;2(2):103-112.

51

Ben-Porath I, Weinberg RA. The signals and pathways activating cellular senescence. Int J Biochem Cell Biol. 2005;37(5):961-976.

52

Ferrer I, Blanco-Aparicio C, Peregrina S, et al. Spinophilin acts as a tumor suppressor by regulating Rb phosphorylation. Cell Cycle. 2011;10(16):2751-2762.

53

Aigelsreiter A, Ress AL, Bettermann K, et al. Low expression of the putative tumour suppressor spinophilin is associated with higher proliferative activity and poor prognosis in patients with hepatocellular carcinoma. Br J Cancer. 2013;108(9):1830-1837.

54

Rubin E, Mittnacht S, Villa-Moruzzi E. Site-specific and temporally-regulated retinoblastoma protein dephosphorylation by protein phosphatase type 1. Oncogene. 2001;20(29):3776-3785.

55

Berndt N, Dohadwala M, Liu CW. Constitutively active protein phosphatase 1alpha causes Rb-dependent G1 arrest in human cancer cells. Curr Biol. 1997;7(6):375-386.

56

Kolupaeva V, Janssens V. PP1 and PP2A phosphatases: cooperating partners in modulating retinoblastoma protein activation. FEBS J. 2013;280(2):627-643.

57

Liu CW, Wang RH, Dohadwala M, et al. Inhibitory phosphorylation of PP1alpha catalytic subunit during the G(1)/S transition. J Biol Chem. 1999;274(41):29470-29475.

58

Puntoni F, Villa-Moruzzi E. Association of protein phosphatase-1delta with the retinoblastoma protein and reversible phosphatase activation in mitotic HeLa cells and in cells released from mitosis. Biochem Biophys Res Commun. 1997;235(3):704-708.

59

Puntoni F, Villa-Moruzzi E. Protein phosphatase-1 alpha, gamma 1, and delta: changes in phosphorylation and activity in mitotic HeLa cells and in cells released from the mitotic block. Arch Biochem Biophys. 1997;340(2):177-184.

60

Tamrakar S, Rubin E, Ludlow JW. Role of pRB dephosphorylation in cell cycle regulation. Front Biosci. 2000;5:D121-D137.

61

Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81(3):323-330.

62

Rubin E, Tamrakar S, Ludlow JW. Protein phosphatase type 1, the product of the retinoblastoma susceptibility gene, and cell cycle control. Front Biosci. 1998;3:D1209-D1219.

63

Nelson DA, Ludlow JW. Characterization of the mitotic phase pRb-directed protein phosphatase activity. Oncogene. 1997;14(20):2407-2415.

64

Fisher LA, Wang L, Wu L, et al. Phosphatase 1 nuclear targeting subunit is an essential regulator of M-phase entry, maintenance, and exit. J Biol Chem. 2014;289(34):23745-23752.

65

Choy MS, Hieke M, Kumar GS, et al. Understanding the antagonism of retinoblastoma protein dephosphorylation by PNUTS provides insights into the PP1 regulatory code. Proc Natl Acad Sci USA. 2014;111(11):4097-4102.

66

Tamrakar S, Mittnacht S, Ludlow JW. Binding of select forms of pRB to protein phosphatase type 1 independent of catalytic activity. Oncogene. 1999;18(54):7803-7809.

67

Ludlow JW, Glendening CL, Livingston DM, et al. Specific enzymatic dephosphorylation of the retinoblastoma protein. Mol Cell Biol. 1993;13(1):367-372.

68
FerrerIPeregrinoSCañameroMSpinophilin loss contributes to tumorigenesis in vivoCell Cycle201110121948195510.4161/cc.10.12.15798

Ferrer I, Peregrino S, Cañamero M, et al. Spinophilin loss contributes to tumorigenesis in vivo. Cell Cycle. 2011;10(12):1948-1955.

69

Ferrer I, Verdugo-Sivianes EM, Castilla MA, et al. Loss of the tumor suppressor spinophilin (PPP1R9B) increases the cancer stem cell population in breast tumors. Oncogene. 2016;35(21):2777-2788.

70

Verdugo-Sivianes EM, Navas L, Molina-Pinelo S, et al. Coordinated downregulation of Spinophilin and the catalytic subunits of PP1, PPP1CA/B/C, contributes to a worse prognosis in lung cancer. Oncotarget. 2017;8(62):105196-105210.

71

Mittnacht S. The retinoblastoma protein: from bench to bedside. Eur J Cell Biol. 2005;84(2–3):97-107.

72

Song Y, Zhang L, Jiang Y, et al. MTBP regulates cell survival and therapeutic sensitivity in TP53 wildtype glioblastomas. Theranostics. 2019;9(20):6019-6030.

73

Estevez-Garcia P, Lopez-Calderero I, Molina-Pinelo S, et al. Spinophilin loss correlates with poor patient prognosis in advanced stages of colon carcinoma. Clin Cancer Res. 2013;19(14):3925-3935.

74

Molina-Pinelo S, Ferrer I, Blanco-Aparicio C, et al. Down-regulation of spinophilin in lung tumours contributes to tumourigenesis. J Pathol. 2011;225(1):73-82.

75

Durfee T, Becherer K, Chen PL, et al. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 1993;7(4):555-569.

76

Ludlow JW, Nelson DA. Control and activity of type-1 serine/threonine protein phosphatase during the cell cycle. Semin Cancer Biol. 1995;6(4):195-202.

77

Classon M, Dyson N. p107 and p130:versatile proteins with interesting pockets. Exp Cell Res. 2001;264(1):135-147.

78

Graña X, Garriga J, Mayol X. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene. 1998;17(25):3365-3383.

79

Bartek J, Bartkova J, Lukas J. The retinoblastoma protein pathway and the restriction point. Curr Opin Cell Biol. 1996;8(6):805-814.

80

Claudio PP, Tonini T, Giordano A. The retinoblastoma family: twins or distant cousins? Genome Biol. 2002;3(9).reviews3012.

81

Mayol X, Grana X. The p130 pocket protein: keeping order at cell cycle exit/re-entrance transitions. Front Biosci. 1998;3:d11-d24.

82

Cobrinik D. Pocket proteins and cell cycle control. Oncogene. 2005;24(17):2796-2809.

83

Feng J, Yan Z, Ferreira A, et al. Spinophilin regulates the formation and function of dendritic spines. Proc Natl Acad Sci USA. 2000;97(16):9287-9292.

84

Aigelsreiter AM, Aigelsreiter A, Wehrschuetz M, et al. Loss of the putative tumor suppressor protein spinophilin is associated with poor prognosis in head and neck cancer. Hum Pathol. 2014;45(4):683-690.

85

Ress AL, Stiegelbauer V, Schwarzenbacher D, et al. Spinophilin expression determines cellular growth, cancer stemness and 5-flourouracil resistance in colorectal cancer. Oncotarget. 2014;5(18):8492-8502.

86

Carnero A, Garcia-Mayea Y, Mir C, et al. The cancer stem-cell signaling network and resistance to therapy. Cancer Treat Rev. 2016;49:25-36.

87

Cheerathodi M, Avci NG, Guerrero PA, et al. The cytoskeletal adapter protein spinophilin regulates invadopodia dynamics and tumor cell invasion in glioblastoma. Mol Cancer Res. 2016;14(12):1277-1287.

88

Santra M, Zhang X, Santra S, et al. Ectopic doublecortin gene expression suppresses the malignant phenotype in glioblastoma cells. Cancer Res. 2006;66(24):11726-11735.

89

Santra M, Santra S, Roberts C, et al. Doublecortin induces mitotic microtubule catastrophe and inhibits glioma cell invasion. J Neurochem. 2009;108(1):231-245.

90

Santra M, Santra S, Buller B, et al. Effect of doublecortin on self-renewal and differentiation in brain tumor stem cells. Cancer Sci. 2011;102(7):1350-1357.

91

Schwarzenbacher D, Stiegelbauer V, Deutsch A, et al. Low spinophilin expression enhances aggressive biological behavior of breast cancer. Oncotarget. 2015;6(13):11191-11202.

92

Jiang Z, Deng T, Jones R, et al. Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. J Clin Invest. 2010;120(9):3296-3309.

93

Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983-3988.

94

Kareta MS, Gorges LL, Hafeez S, et al. Inhibition of pluripotency networks by the Rb tumor suppressor restricts reprogramming and tumorigenesis. Cell Stem Cell. 2015;16(1):39-50.

95

Wang ML, Chiou SH, Wu CW. Targeting cancer stem cells: emerging role of Nanog transcription factor. Onco Targets Ther. 2013;6:1207-1220.

96

Zhang W, Sui Y, Ni J, et al. Insights into the Nanog gene: a propeller for stemness in primitive stem cells. Int J Biol Sci. 2016;12(11):1372-1381.

97

She S, Wei Q, Kang B, et al. Cell cycle and pluripotency: convergence on octamer-binding transcription factor 4 (Review). Mol Med Rep. 2017;16(5):6459-6466.

98

Schoeftner S, Scarola M, Comisso E, et al. An Oct4-pRb axis, controlled by miR-335, integrates stem cell self-renewal and cell cycle control. Stem Cells. 2013;31(4):717-728.

99

Comisso E, Scarola M, Rosso M, et al. OCT4 controls mitotic stability and inactivates the RB tumor suppressor pathway to enhance ovarian cancer aggressiveness. Oncogene. 2017;36(30):4253-4266.

Genes & Diseases
Pages 187-198
Cite this article:
Verdugo-Sivianes EM, Carnero A. SPINOPHILIN: A multiplayer tumor suppressor. Genes & Diseases, 2023, 10(1): 187-198. https://doi.org/10.1016/j.gendis.2021.12.021

229

Views

2

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 22 October 2021
Accepted: 24 December 2021
Published: 03 February 2022
© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return