AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Cancer genes and cancer stem cells in tumorigenesis: Evolutionary deep homology and controversies

Kirschenweg 1, Diedorf 86420, Germany

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

In the past, contradictory statements have been made about the age of cancer genes. While phylostratigraphic studies suggest that cancer genes emerged during the transitional period from unicellularians (UC) to early metazoans (EM), life cycle studies suggest that they arose earlier. This controversy could not be resolved. Phylostratigraphic methods use data from somatic tumor gene collections containing or lacking polyploidy genes (PGCC genes) and compare them to genes from evolutionary node taxa. I analyze whether the selected taxa are suitable to resolve the above contradiction or not. Both cancer and amoebae life cycles have a reproductive asexual germline that produces germline stem cells (GSCs) and somatic cell lines that cannot. When the germline loses its reproductive function, the soma-to-germ transition forms a new reproductive germline. The reproductive polyploidy of cancer is homologous to the reproductive polyploidy of unicellular cysts. PGCCs repair DNA defects, reorganize the involved genome architecture and produce new GSCs. The present study refutes the dogma of the early metazoan origin of cancer. Cancer has a unicellular life cycle that was adopted by early metazoans to rescue themselves from evolutionary dead ends. Early metazoans controlled the unicellular life cycle through suppressor and anti-suppressor genes that could suspend or reactivate it. They are the archetypes of tumor suppressor genes and oncogenes. Cells of mammalians and humans that reach a similar impasse as early metazoans can reactivate the conserved life cycle of unicellularians.

References

1
Kreisman R. Deep homology opens up new possibilities for generesearch. preprint at https://www.robertkreisman.com/medicalmalpractice-lawyer/deep_homology_opens_up_new_pos/; 2010.
2

McGary KL, Park TJ, Woods JO, Cha HJ, Wallingford JB, Marcotte EM. Systematic discovery of non obvious human disease models through orthologous phenotypes. Proc Natl Acad Sci U S A. 2010;107(14): 6544-6549.

3

Niculescu VF. aCLS cancers: genomic and epigenetic changes transform the cell of origin of cancer into a tumorigenic pathogen of unicellular organization and lifestyle. Gene. 2020;726: 144174.

4

Niculescu VF. Germline evolution in cancer as explained by the germ and soma theory of dual cell systems. J Clin Anat Pathol. 2021;6(1): 113.

5

Forterre P. The universal tree of life: an update. Front Microbiol. 2015;6: 717.

6

Albuquerque TAF, Drummond do Val L, Doherty A, de Magalhães JP. From humans to hydra: patterns of cancer across the tree of life. Biol Rev Camb Philos Soc. 2018;93(3): 1715-1734.

7

Shubin N, Tabin C, Carroll S. Deep homology and the origins of evolutionary novelty. Nature. 2009;457(7231): 818-823.

8
Wagner GP. Homology, Genes and Evolutionary Inovation. NewJersey, USA: Princeton Univerity Press; 2014.
9

Tschopp P, Tabin CJ. Deep homology in the age of next-generation sequencing. Philos Trans R Soc Lond B Biol Sci. 2017;372(1713): 20150475.

10

Nachman MW, Hoekstra HE, D'Agostino SL. The genetic basis of adaptive melanism in pocket mice. Proc Natl Acad Sci U S A. 2003;100(9): 5268-5273.

11

Wittkopp PJ, Carroll SB, Kopp A. Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet. 2003;19(9): 495-504.

12

Davidson EH, Erwin DH. Gene regulatory networks and the evolution of animal body plans. Science. 2006;311(5762): 796-800.

13

Erwin DH. Early metazoan life: divergence, environment and ecology. Philos Trans R Soc Lond B Biol Sci. 2015;370(1684): 20150036.

14

Vendramin R, Litchfield K, Swanton C. Cancer evolution: Darwin and beyond. EMBO J. 2021;40(18): e108389.

15
Shubin N. Some Assembly Required: Decoding Four BillionYears of Life, from Ancient Fossils to DNA. New York: VintageBooks, Penguin Random House, LLC; 2020.
16

Johnson N. Nothing in biology begins when you think it does. Evol Educ Outreach. 2020;13(1): 24.

17

Davis A, Gao R, Navin N. Tumor evolution: linear, branching, neutral or punctuated? Biochim Biophys Acta Rev Cancer. 2017;1867(2): 151-161.

18

Domazet-Loso T, Brajković J, Tautz D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 2007;23(11): 533-539.

19

Domazet-Loso T, Tautz D. Phylostratigraphic tracking of cancer genes suggests a link to the emergence of multicellularity in Metazoa. BMC Biol. 2010;8: 66.

20

Trigos AS, Pearson RB, Papenfuss AT, Goode DL. Altered interactions between unicellular and multicellular genes drive hallmarks of transformation in a diverse range of solid tumors. Proc Natl Acad Sci U S A. 2017;114(24): 6406-6411.

21

Trigos AS, Pearson RB, Papenfuss AT, Goode DL. Somatic mutations in early metazoan genes disrupt regulatory links between unicellular and multicellular genes in cancer. Elife. 2019;8: e40947.

22

Niculescu VF. Is an ancient genome repair mechanism the Trojan Horse of cancer? Nov Appro in Can Study. 2021;5(5). NACS.000625.

23

Nayernia K. Germ cells, origin of somatic stem cells? Cell Res. 2008;18: S26.

24

Nayernia K, Lee JH, Engel W, et al. From stem cells to germ cells and from germ cells to stem cells. Int J Reprod Biomed. 2007;5(2): 41-44.

25

Solana J. Closing the circle of germline and stem cells: the Primordial Stem Cell hypothesis. Evodevo. 2013;4(1): 2.

26

Anatskaya OV, Vinogradov AE, Vainshelbaum NM, Giuliani A, Erenpreisa J. Phylostratic shift of whole-genome duplications in normal mammalian tissues towards unicellularity is driven by developmental bivalent genes and reveals a link to cancer. Int J Mol Sci. 2020;21(22): 8759.

27

Erenpreisa J, Salmina K, Anatskaya O, Cragg MS. Paradoxes of cancer: survival at the brink. Semin Cancer Biol. 2022;81: 119-131.

28
Schussnig B. Stammesgeschichtlicher Formenwandel undGestaltungstypen im Reich der Pilze. Horn, Austria: VerlagFerdinand Berger & Söhne Ges. m. b. H.; 1948.
29

Mylnikov AP, Karpov SA. Review of diversity and taxonomy of cercomonads. Protistology. 2004;3: 201-221.

30

Keeling PJ, Palmer JD. Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet. 2008;9(8): 605-618.

31

Sogabe S, Hatleberg WL, Kocot KM, et al. Pluripotency and the origin of animal multicellularity. Nature. 2019;570(7762): 519-522.

32

Carr M, Leadbeater BS, Hassan R, Nelson M, Baldauf SL. Molecular phylogeny of choanoflagellates, the sister group to Metazoa. Proc Natl Acad Sci U S A. 2008;105(43): 16641-16646.

33

Maldonado M. Choanoflagellates, choanocytes, and animal multicellularity. Invertebr Biol. 2004;123(1): 1-22.

34

Cavalier-Smith T. Origin of animal multicellularity: precursors, causes, consequences-the choanoflagellate/sponge transition, neurogenesis and the Cambrian explosion. Philos Trans R Soc Lond B Biol Sci. 2017;372(1713): 20150476.

35

Brunet T, King N. The origin of animal multicellularity and cell differentiation. Dev Cell. 2017;43(2): 124-140.

36

Nielsen C. Six major steps in animal evolution: are we derived sponge larvae? Evol Dev. 2008;10(2): 241-257.

37

Kang S, Tice AK, Spiegel FW, et al. Between a pod and a hard test: the deep evolution of amoebae. Mol Biol Evol. 2017;34(9): 2258-2270.

38

Daniels EW, Pappas GD. Reproduction of nuclei in Pelomyxa palustris. Cell Biol Int. 1994;18(8): 805-812.

39
Schilde C, Schaap P. The Amoebozoa. In: Ludwig Eichinger L, Rivero F, eds. Dictyostelium discoideum Protocols SecondEdition (Methods in Molecular Biology). NY: New York: SpringerScience+Business Media, LLC; 2013.
40

Stephenson SL, Stempen H. Myxomycetes: a handbook of slime molds. Mycologia. 1995;87(3): 424.

41
Kendal WS. Gain and loss of cancer stem cells: effect onmetastatic efficiency and treatment response. In: Stem Cellsand Cancer Stem Cells. vol. 3. Dordrecht: SpringerNetherlands; 2011: 231-240.
42
Weinberg RA. The Biology of Cancer. Oxford: Garland Science; 2008.
43

Louka A, Takan I, Pavlopoulou A, Georgakilas AG. Bioinformatic approaches to the investigation of the atavistic genes implicated in cancer. Front Biosci (Landmark Ed). 2021;26(8): 279-311.

44

Martincorena I, Raine KM, Gerstung M, et al. Universal patterns of selection in cancer and somatic tissues. Cell. 2017;171(5): 1029-1041.

45

Miller DG. On the nature of susceptibility to cancer. The presidential address. Cancer. 1980;46(6): 1307-1318.

46

Schinzel AC, Hahn WC. Oncogenic transformation and experimental models of human cancer. Front Biosci. 2008;13: 71-84.

47

Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458(7239): 719-724.

48

Walcher L, Kistenmacher AK, Suo H, et al. Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol. 2020;11: 1280.

49

Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859): 105-111.

50

Rich JN. Cancer stem cells: understanding tumor hierarchy and heterogeneity. Medicine (Baltimore). 2016;95(1 Suppl 1): S2-S7.

51

Arnold CR, Mangesius J, Skvortsova II, Ganswindt U. The role of cancer stem cells in radiation resistance. Front Oncol. 2020;10: 164.

52

Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10): 1124-1134.

53

Bradshaw A, Wickremsekera A, Tan ST, Peng L, Davis PF, Itinteang T. Cancer stem cell hierarchy in glioblastoma multiforme. Front Surg. 2016;3: 21.

54

Atashzar MR, Baharlou R, Karami J, et al. Cancer stem cells: a review from origin to therapeutic implications. J Cell Physiol. 2020;235(2): 790-803.

55

Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer. 2017;16(1): 41.

56

Kreso A, O'Brien CA, van Galen P, et al. Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science. 2013;339(6119): 543-548.

57

Martins-Neves SR, Cleton-Jansen AM, Gomes CMF. Therapy-induced enrichment of cancer stem-like cells in solid human tumors: where do we stand? Pharmacol Res. 2018;137: 193-204.

58

Rycaj K, Tang DG. Cancer stem cells and radioresistance. Int J Radiat Biol. 2014;90(8): 615-621.

59

Mladenov E, Magin S, Soni A, Iliakis G. DNA double-strand-break repair in higher eukaryotes and its role in genomic instability and cancer: cell cycle and proliferation-dependent regulation. Semin Cancer Biol. 2016;37–38: 51-64.

60

Her J, Bunting SF. How cells ensure correct repair of DNA double-strand breaks. J Biol Chem. 2018;293(27): 10502-10511.

61

Gunnarsson EB, De S, Leder K, Foo J. Understanding the role of phenotypic switching in cancer drug resistance. J Theor Biol. 2020;490: 110162.

62

Brock A, Chang H, Huang S. Non-genetic heterogeneity – a mutation-independent driving force for the somatic evolution of tumours. Nat Rev Genet. 2009;10(5): 336-342.

63

Brown R, Curry E, Magnani L, Wilhelm-Benartzi CS, Borley J. Poised epigenetic states and acquired drug resistance in cancer. Nat Rev Cancer. 2014;14(11): 747-753.

64

Tycko B. Epigenetic gene silencing in cancer. J Clin Invest. 2000;105(4): 401-407.

65

Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020;13(6): 100773.

66

Ye X, Weinberg RA. Epithelial-mesenchymal plasticity: a central regulator of cancer progression. Trends Cell Biol. 2015;25(11): 675-686.

67

May CD, Sphyris N, Evans KW, Werden SJ, Guo W, Mani SA. Epithelial-mesenchymal transition and cancer stem cells: a dangerously dynamic duo in breast cancer progression. Breast Cancer Res. 2011;13(1): 202.

68

Scheel C, Weinberg RA. Phenotypic plasticity and epithelial-mesenchymal transitions in cancer and normal stem cells? Int J Cancer. 2011;129(10): 2310-2314.

69

Farmer P, Bonnefoi H, Anderle P, et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med. 2009;15(1): 68-74.

70

Lin YT, Wu KJ. Epigenetic regulation of epithelial-mesenchymal transition: focusing on hypoxia and TGF-β signaling. J Biomed Sci. 2020;27(1): 39.

71

Lu W, Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell. 2019;49(3): 361-374.

72

Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016;166(1): 21-45.

73

Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20(2): 69-84.

74

Tsai JH, Donaher JL, Murphy DA, Chau S, Yang J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell. 2012;22(6): 725-736.

75

Terry S, Savagner P, Ortiz-Cuaran S, et al. New insights into the role of EMT in tumor immune escape. Mol Oncol. 2017;11(7): 824-846.

76

Baker SG. The case for a cancer paradox initiative. Carcinogenesis. 2021;42(8): 1023-1025.

77
Niculescu VF. The germ and soma life cycle of Entamoeba andits stem cells as an evolutionary model for cancer life cycle.2022.
78

Bhattacharya A, Ghildyal R, Prasad J, Bhattacharya S, Diamond LS. Modulation of a surface antigen of Entamoeba histolytica in response to bacteria. Infect Immun. 1992;60(4): 1711-1713.

79

Biller L, Matthiesen J, Kühne V, et al. The cell surface proteome of Entamoeba histolytica. Mol Cell Proteomics. 2014;13(1): 132-144.

80

Martin CE, List K. Cell surface-anchored serine proteases in cancer progression and metastasis. Cancer Metastasis Rev. 2019;38(3): 357-387.

81

Pišlar A, Perišić Nanut M, Kos J. Lysosomal cysteine peptidases – molecules signaling tumor cell death and survival. Semin Cancer Biol. 2015;35: 168-179.

82
Niculescu VF. Hyperoxia-mediated genome alteration in the germline of Entamoeba and the amoeba-cancer model. Genes Dis. Submitted for publication.
Genes & Diseases
Pages 1234-1247
Cite this article:
Niculescu VF. Cancer genes and cancer stem cells in tumorigenesis: Evolutionary deep homology and controversies. Genes & Diseases, 2022, 9(5): 1234-1247. https://doi.org/10.1016/j.gendis.2022.03.010

311

Views

2

Downloads

16

Crossref

14

Web of Science

14

Scopus

3

CSCD

Altmetrics

Received: 07 December 2021
Revised: 10 February 2022
Accepted: 08 March 2022
Published: 04 April 2022
© 2022, Chongqing Medical University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return