AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Melanoma: Molecular genetics, metastasis, targeted therapies, immunotherapies, and therapeutic resistance

William Wagstaffa,bRimel N. MwambaaKarina GrullonaMikhayla ArmstrongaPiao Zhaob,cBryce Hendren-SantiagobKevin H. QinbAlexander J. LibDaniel A. HubAndrew YoussefbRussell R. Reidb,dHue H. LuubLe Shenb,eTong-Chuan Heb,e( )Rex C. Haydonb( )
The Pritzker School of Medicine, and the Medical Scientist Training Program, The University of Chicago Medical Center, Chicago, IL 60637, USA
Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
Show Author Information

Abstract

Cutaneous melanoma is a common cancer and cases have steadily increased since the mid 70s. For some patients, early diagnosis and surgical removal of melanomas is lifesaving, while other patients typically turn to molecular targeted therapies and immunotherapies as treatment options. Easy sampling of melanomas allows the scientific community to identify the most prevalent mutations that initiate melanoma such as the BRAF, NRAS, and TERT genes, some of which can be therapeutically targeted. Though initially effective, many tumors acquire resistance to the targeted therapies demonstrating the need to investigate compensatory pathways. Immunotherapies represent an alternative to molecular targeted therapies. However, inter-tumoral immune cell populations dictate initial therapeutic response and even tumors that responded to treatment develop resistance in the long term. As the protocol for combination therapies develop, so will our scientific understanding of the many pathways at play in the progression of melanoma. The future direction of the field may be to find a molecule that connects all of the pathways. Meanwhile, noncoding RNAs have been shown to play important roles in melanoma development and progression. Studying noncoding RNAs may help us to understand how resistance – both primary and acquired – develops; ultimately allow us to harness the true potential of current therapies. This review will cover the basic structure of the skin, the mutations and pathways responsible for transforming melanocytes into melanomas, the process by which melanomas metastasize, targeted therapeutics, and the potential that noncoding RNAs have as a prognostic and treatment tool.

References

1

Miller AJ, . Melanoma. N Engl J Med. 2006;355(1): 51-65.

2

Eggermont AM, Spatz A, Robert C. Cutaneous melanoma. Lancet. 2014;383(9919): 816-827.

3

Kanitakis J. Anatomy, histology and immunohistochemistry of normal human skin. Eur J Dermatol. 2002;12(4): 390-399.

4

Kolarsick P, Kolarsick M, Goodwin C. Anatomy and physiology of the skin. J Dermatol Nurses Assoc. 2011;3(4): 203-213.

5
Freedberg I, Eisen A, Wolff K, Austen K, Goldsmith L, Katz S. Fitzpatrick's Dermatology in General Medicine. 6th ed. McGraw-Hill Education; 2003.
6

D'Mello SA, Finlay GJ, Baguley BC, Askarian-Amiri ME. Signaling pathways in melanogenesis. Int J Mol Sci. 2016;17(7): 1144.

7

Cichorek M, Wachulska M, Stasiewicz A, Tymińska A. Skin melanocytes: biology and development. Postepy Dermatol Alergol. 2013;30(1): 30-41.

8

Maddodi N, Jayanthy A, Setaluri V. Shining light on skin pigmentation: the darker and the brighter side of effects of UV radiation. Photochem Photobiol. 2012;88(5): 1075-1082.

9
Halpern AC, Marghoob AA, Ofer R. Melanoma. Melanoma Overview. The Skin Cancer Foundation; 2021. https://www.skincancer.org/skin-cancer-information/melanoma/. Accessed December 10, 2021.
10

Bolognia JL, Schaffer JV, Cerroni L. Dermatology. 4th ed. Elsevier; 2017.

11
Superficial Spreading Melanoma. Memorial Sloan Kettering Cancer Center; 2021. https://www.mskcc.org/cancer-care/types/melanoma/types-melanoma/superficial-spreadingmelanoma. Accessed December 10, 2021.
12

Goydos JS, Shoen SL. Acral lentiginous melanoma. Cancer Treat Res. 2016;167: 321-329.

13

Menzies SW, Moloney FJ, Byth K, et al. Dermoscopic evaluation of nodular melanoma. JAMA Dermatol. 2013;149(6): 699-709.

14

van der Meijden WA, van Bruchem-Visser RL, Thio HB, van der Cammen TJ. Melanomas more serious in the elderly. Ned Tijdschr Geneeskd. 2010;154: A1535.

15

Keung EZ, Gershenwald JE. The eighth edition American Joint Committee on Cancer (AJCC) melanoma staging system: implications for melanoma treatment and care. Expert Rev Anticancer Ther. 2018;18(8): 775-784.

16

Potrony M, Badenas C, Aguilera P, et al. Update in genetic susceptibility in melanoma. Ann Transl Med. 2015;3(15): 210.

17

Ribas A, Flaherty KT. BRAF targeted therapy changes the treatment paradigm in melanoma. Nat Rev Clin Oncol. 2011;8(7): 426-433.

18

Ascierto PA, Kirkwood JM, Grob JJ, et al. The role of BRAF V600 mutation in melanoma. J Transl Med. 2012;10: 85.

19

Kelleher FC, McArthur GA. Targeting NRAS in melanoma. Cancer J. 2012;18(2): 132-136.

20

Fedorenko IV, Gibney GT, Smalley KS. NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene. 2013;32(25): 3009-3018.

21

Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent TERT promoter mutations in human melanoma. Science. 2013;339(6122): 957-959.

22

Hugdahl E, Kalvenes MB, Mannelqvist M, Ladstein RG, Akslen LA. Prognostic impact and concordance of TERT promoter mutation and protein expression in matched primary and metastatic cutaneous melanoma. Br J Cancer. 2018;118(1): 98-105.

23

Reyes-Uribe P, Adrianzen-Ruesta MP, Deng Z, et al. Exploiting TERT dependency as a therapeutic strategy for NRAS-mutant melanoma. Oncogene. 2018;37(30): 4058-4072.

24

, Elder DE, , Epstein MN, Greene MH, Van Horn M. A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol. 1984;15(12): 1147-1165.

25

Klein CA. Parallel progression of primary tumours and metastases. Nat Rev Cancer. 2009;9(4): 302-312.

26

Stoecklein NH, Klein CA. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer. 2010;126(3): 589-598.

27

Podsypanina K, Du YC, Jechlinger M, Beverly LJ, Hambardzumyan D, Varmus H. Seeding and propagation of untransformed mouse mammary cells in the lung. Science. 2008;321(5897): 1841-1844.

28

Hüsemann Y, Geigl JB, Schubert F, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13(1): 58-68.

29

Gartner JJ, Davis S, Wei X, et al. Comparative exome sequencing of metastatic lesions provides insights into the mutational progression of melanoma. BMC Genomics. 2012;13: 505.

30

Turajlic S, Furney SJ, Lambros MB, et al. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res. 2012;22(2): 196-207.

31

Pleasance ED, Cheetham RK, Stephens PJ, et al. A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 2010;463(7278): 191-196.

32

Lee JH, Miele ME, Hicks DJ, et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst. 1996;88(23): 1731-1737.

33

Goldberg SF, Miele ME, Hatta N, et al. Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Res. 2003;63(2): 432-440.

34

Nash KT, Phadke PA, Navenot JM, et al. Requirement of KISS1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J Natl Cancer Inst. 2007;99(4): 309-321.

35

Damsky WE, Rosenbaum LE, Bosenberg M. Decoding melanoma metastasis. Cancers (Basel). 2010;3(1): 126-163.

36

Bhatia S, Tykodi SS, Thompson JA. Treatment of metastatic melanoma: an overview. Oncology (Williston Park). 2009;23(6): 488-496.

37

Horn S, Figl A, Rachakonda PS, et al. TERT promoter mutations in familial and sporadic melanoma. Science. 2013;339(6122): 959-961.

38

Griewank KG, Murali R, Puig-Butille JA, et al. TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma. J Natl Cancer Inst. 2014;106(9): dju246.

39

Hartman ML, Czyz M. Anti-apoptotic proteins on guard of melanoma cell survival. Cancer Lett. 2013;331(1): 24-34.

40

Mitra D, Fisher DE. Transcriptional regulation in melanoma. Hematol Oncol Clin North Am. 2009;23(3): 447-465.

41

Garraway LA, Widlund HR, Rubin MA, et al. Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature. 2005;436(7047): 117-122.

42

Widlund HR, Horstmann MA, Price ER, et al. Beta-catenin-induced melanoma growth requires the downstream target Microphthalmia-associated transcription factor. J Cell Biol. 2002;158(6): 1079-1087.

43

Demunter A, Libbrecht L, Degreef H, De Wolf-Peeters C, van den Oord JJ. Loss of membranous expression of beta-catenin is associated with tumor progression in cutaneous melanoma and rarely caused by exon 3 mutations. Mod Pathol. 2002;15(4): 454-461.

44

Forbes SA, Tang G, Bindal N, et al. COSMIC (the Catalogue of Somatic Mutations in Cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res. 2010;38(Database issue): D652-D657.

45

Omholt K, Platz A, Ringborg U, Hansson J. Cytoplasmic and nuclear accumulation of beta-catenin is rarely caused by CTNNB1 exon 3 mutations in cutaneous malignant melanoma. Int J Cancer. 2001;92(6): 839-842.

46

Hodis E, Watson IR, Kryukov GV, et al. A landscape of driver mutations in melanoma. Cell. 2012;150(2): 251-263.

47

Damsky WE, Theodosakis N, Bosenberg M. Melanoma metastasis: new concepts and evolving paradigms. Oncogene. 2014;33(19): 2413-2422.

48

Lopez-Bergami P. The role of mitogen- and stress-activated protein kinase pathways in melanoma. Pigment Cell Melanoma Res. 2011;24(5): 902-921.

49

Colombino M, Capone M, Lissia A, et al. BRAF/NRAS mutation frequencies among primary tumors and metastases in patients with melanoma. J Clin Oncol. 2012;30(20): 2522-2529.

50

Rozenberg GI, Monahan KB, Torrice C, Bear JE, Sharpless NE. Metastasis in an orthotopic murine model of melanoma is independent of RAS/RAF mutation. Melanoma Res. 2010;20(5): 361-371.

51

Jakob JA, , Ng CS, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118(16): 4014-4023.

52

Tsao H, Zhang X, Benoit E, Haluska FG. Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene. 1998;16(26): 3397-3402.

53

Zhou XP, Gimm O, Hampel H, Niemann T, Walker MJ, Eng C. Epigenetic PTEN silencing in malignant melanomas without PTEN mutation. Am J Pathol. 2000;157(4): 1123-1128.

54

Ko JM, Velez NF, Tsao H. Pathways to melanoma. Semin Cutan Med Surg. 2010;29(4): 210-217.

55

Stahl JM, Sharma A, Cheung M, et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 2004;64(19): 7002-7010.

56

Dankort D, Curley DP, Cartlidge RA, et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 2009;41(5): 544-552.

57

Nogueira C, Kim KH, Sung H, et al. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis. Oncogene. 2010;29(47): 6222-6232.

58

Kotani M, Detheux M, Vandenbogaerde A, et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem. 2001;276(37): 34631-34636.

59

Deng W, Fernandez A, McLaughlin SL, . WNT1-inducible signaling pathway protein 1 (WISP1/CCN4) stimulates melanoma invasion and metastasis by promoting the epithelial-mesenchymal transition. J Biol Chem. 2019;294(14): 5261-5280.

60

Bedogni B. Notch signaling in melanoma: interacting pathways and stromal influences that enhance Notch targeting. Pigment Cell Melanoma Res. 2014;27(2): 162-168.

61

Kabbarah O, Nogueira C, Feng B, et al. Integrative genome comparison of primary and metastatic melanomas. PLoS One. 2010;5(5): e10770.

62

Yan J, Huang Q. Genomics screens for metastasis genes. Cancer Metastasis Rev. 2012;31(3–4): 419-428.

63

Kim M, Gans JD, Nogueira C, et al. Comparative oncogenomics identifies NEDD9 as a melanoma metastasis gene. Cell. 2006;125(7): 1269-1281.

64

Das Thakur M, Salangsang F, Landman AS, et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature. 2013;494(7436): 251-255.

65

Straussman R, Morikawa T, Shee K, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487(7408): 500-504.

66

Proietti I, Skroza N, Bernardini N, et al. Mechanisms of acquired BRAF inhibitor resistance in melanoma: a systematic review. Cancers (Basel). . 2020;12(10): 2801.

67

Zhao Y, Adjei AA. The clinical development of MEK inhibitors. Nat Rev Clin Oncol. 2014;11(7): 385-400.

68

Grimaldi AM, Simeone E, Ascierto PA. The role of MEK inhibitors in the treatment of metastatic melanoma. Curr Opin Oncol. 2014;26(2): 196-203.

69

Lugowska I, Teterycz P, Rutkowski P. Immunotherapy of melanoma. Contemp Oncol (Pozn). 2018;22(1A): 61-67.

70

Robert C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat Commun. 2020;11(1): 3801.

71

Domingues B, Lopes JM, Soares P, Pópulo H. Melanoma treatment in review. Immunotargets Ther. 2018;7: 35-49.

72

Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics - challenges and potential solutions. Nat Rev Drug Discov. 2021;20(8): 629-651.

73

Chan JJ, Tay Y. Noncoding RNA: RNA regulatory networks in cancer. Int J Mol Sci. 2018;19(5): 1310.

74

Díaz-Martínez M, Benito-Jardón L, Alonso L, Koetz-Ploch L, Hernando E, Teixidó J. miR-204-5p and miR-211-5p contribute to BRAF inhibitor resistance in melanoma. Cancer Res. 2018;78(4): 1017-1030.

75

Yu X, Zheng H, Tse G, Chan MT, Wu WK. Long non-coding RNAs in melanoma. Cell Prolif. 2018;51(4): e12457.

76

Leucci E, Vendramin R, Spinazzi M, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;531(7595): 518-522.

77

Davis LE, Shalin SC, Tackett AJ. Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 2019;20(11): 1366-1379.

78

Patel H, Yacoub N, Mishra R, et al. Current advances in the treatment of BRAF-mutant melanoma. Cancers (Basel). 2020;12(2): 482.

79

Liu Y, Sheikh MS. Melanoma: molecular pathogenesis and therapeutic management. Mol Cell Pharmacol. 2014;6(3): 228.

80

Li XY, Tan LC, Dong LW, et al. Susceptibility and resistance mechanisms during photodynamic therapy of melanoma. Front Oncol. 2020;10: 597.

81

Hou YJ, Yang XX, Liu RQ, et al. Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles. Int J Nanomedicine. 2020;15: 6827-6838.

82

Vera RE, Lamberti MJ, Rivarola VA, Rumie Vittar NB. Developing strategies to predict photodynamic therapy outcome: the role of melanoma microenvironment. Tumour Biol. 2015;36(12): 9127-9136.

83

Baldea I, Giurgiu L, Teacoe ID, et al. Photodynamic therapy in melanoma - where do we stand? Curr Med Chem. 2018;25(40): 5540-5563.

Genes & Diseases
Pages 1608-1623
Cite this article:
Wagstaff W, Mwamba RN, Grullon K, et al. Melanoma: Molecular genetics, metastasis, targeted therapies, immunotherapies, and therapeutic resistance. Genes & Diseases, 2022, 9(6): 1608-1623. https://doi.org/10.1016/j.gendis.2022.04.004

431

Views

6

Downloads

26

Crossref

25

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 24 February 2022
Revised: 29 March 2022
Accepted: 10 April 2022
Published: 27 April 2022
© 2022, Chongqing Medical University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return