AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (922.8 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

De novo nucleotide biosynthetic pathway and cancer

Jie Chena,b,1Siqi Yanga,1Yingge Lia,bXu ZiwenbPingfeng ZhangaQibin SongaYi Yaoa( )Huadong Peib( )
Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430062, China
Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C. 20057, USA

Peer review under responsibility of Chongqing Medical University.

1 These authors contributed equally.

Show Author Information

Abstract

De novo nucleotide biosynthetic pathway is a highly conserved and essential biochemical pathway in almost all organisms. Both purine nucleotides and pyrimidine nucleotides are necessary for cell metabolism and proliferation. Thus, the dysregulation of the de novo nucleotide biosynthetic pathway contributes to the development of many human diseases, such as cancer. It has been shown that many enzymes in this pathway are overactivated in different cancers. In this review, we summarize and update the current knowledge on the de novo nucleotide biosynthetic pathway, regulatory mechanisms, its role in tumorigenesis, and potential targeting opportunities.

References

1

Thierry D, Timothy LB, Yuen YH, et al. De novo purine synthesis inhibition and antileukemic effects of mercaptopurine alone or in combination with methotrexate in vivo. Blood. 2002;100(4):1240–1247.

2

Siddiqui A, Ceppi P. A non-proliferative role of pyrimidine metabolism in cancer. Mol Metabol. 2020;35(7):100962.

3

Vincenzetti S, Polzonetti V, Micozzi D, Pucciarelli S. Enzymology of pyrimidine metabolism and neurodegeneration. Curr Med Chem. 2016;23(14):1408–1431.

4

Pareek V, Tian H, Winograd N, Benkovic SJ. Metabolomics and mass spectrometry imaging reveal channeled de novo purine synthesis in cells. Science. 2020;368(29):283–287.

5

Zhu J, Thompson CB. Metabolic regulation of cell growth and proliferation. Nat Rev Mol Cell Biol. 2019;20(7):436–450.

6

Yin J, Ren W, Huang X, Deng J, Li T, Yin Y. Potential mechanisms connecting purine metabolism and cancer therapy. Front Immunol. 2018;9(30):1697.

7

Villa E, Ali ES, Sahu U, Ben-Sahra I. Cancer cells tune the signaling pathways to empower de Novo synthesis of nucleotides. Cancers (Basel). 2019;11(5):688.

8

Allsop J, Watts R. Purine de novo synthesis and salvage during testicular development in the rat. Pediatr Res. 1985;19(3):744.

9

Robinson AD, Eich ML, Varambally S. Dysregulation of de novo nucleotide biosynthetic pathway enzymes in cancer and targeting opportunities. Cancer Lett. 2020;470(3):134–140.

10

Lane AN, Fan TW. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015;43(4):2466–2485.

11

Simmer JP, Kelly RE, Rinker A, et al. Mammalian carbamyl phosphate synthetase (CPS). DNA sequence and evolution of the CPS domain of the Syrian hamster multifunctional protein CAD. J Biol Chem. 1990;265(18):10395–10402.

12

Li G, Li D, Wang T, He S. Pyrimidine biosynthetic enzyme CAD: its function, regulation, and diagnostic potential. Int J Mol Sci. 2021;22(19):10253.

13

Bajzikova M, Kovarova J, Coelho AR, et al. Reactivation of dihydroorotate dehydrogenase-driven pyrimidine biosynthesis restores tumor growth of respiration-deficient cancer cells. Cell Metabol. 2019;29(2):399–416.

14

Loffler M, Fairbanks LD, Zameitat E, Marinaki AM, Simmonds HA. Pyrimidine pathways in health and disease. Trends Mol Med. 2005;11(5):430–437.

15

Aaron MH, Vivian CH, Laura VD, et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev Cell. 2016;36(5):540–549.

16

Boroughs LK, DeBerardinis RJ. Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol. 2015;17(4):351–359.

17

Zhao XA, Petrashen AP, Sanders JA, Peterson AL, Sedivy JM. SLC1A5 glutamine transporter is a target of MYC and mediates reduced mTORC1 signaling and increased fatty acid oxidation in long-lived Myc hypomorphic mice. Aging Cell. 2019;18(3):e12947.

18

Gao P, Irina T, Chang TC, et al. c-Myc suppression of miR-23 enhances mitochondrial glutaminase and glutamine metabolism. Cancer Res. 2009;458(7239):762–765.

19

Alex JB, Peng IC, Fan YJ, et al. Oncogenic myc induces expression of glutamine synthetase through promoter demethylation. Cell Metabol. 2015;22(6):1068–1077.

20

Bernfeld E, Foster DA. Glutamine as an essential amino acid for KRas-driven cancer cells. Trends Endocrin Met. 2019;30(16):357–368.

21

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–1033.

22

Pei YZ, Qian YJ, Wang H, Tan L. Epigenetic regulation of ferroptosis-associated genes and its implication in cancer therapy. Front Oncol. 2022;12(23):112–117.

23

Feng J, Li JJ, Wu LW, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J Exp Clin Cancer Res. 2020;39(1):126.

24

Robey RB, Hay N. Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene. 2006;25(7):4683–4696.

25

Wiernan HL, Wofford JA, Rathmell JC. Cytokine stimulation promotes glucose uptake via phosphatidylinositol-3 kinase/Akt regulation of Glut1 activity and trafficking. Mol Biol Cell. 2007;18(4):1437–1446.

26

Saha A, Connelly S, Jiang JJ, et al. Akt phosphorylation and regulation of transketolase is a nodal point for amino acid control of purine synthesis. Mol Cell. 2014;55(2):264–276.

27

Luciano-Mateo F, Hernandez-Aguilera A, Cabre N, et al. Nutrients in energy and one-carbon metabolism: learning from metformin users. Nutrients. 2017;9(2):121.

28

Andrea R, Alessandra N, Francesca R, Antonella T, Marina B, Delia M. One-carbon metabolism: biological players in epithelial ovarian cancer. Int J Mol Sci. 2018;19(7):2092.

29

Nilsson R, Jain M, Madhusudhan N, et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat Commun. 2014;5(17):3128.

30

Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell. 2017;169(2):361–371.

31

Issam BS, Gerta H, Stephane JHR, John MA, Brendan DM. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science. 2016;351(6274):728–733.

32

Hsieh AL, Walton ZE, Altman BJ, Stine ZE, Dang CV. MYC and metabolism on the path to cancer. Semin Cell Dev Biol. 2015;43(18):11–21.

33

Mannava S, Grachtchouk V, Wheeler LJ, et al. Direct role of nucleotide metabolism in C-MYC-dependent proliferation of melanoma cells. Cell Cycle. 2008;7(15):2392–2400.

34

Cunningham JT, Moreno MV, Lodi A, Ronen SM, Ruggero D. Protein and nucleotide biosynthesis are coupled by a single rate-limiting enzyme, PRPS2, to drive cancer. Cell. 2014;157(18):1088–1103.

35

Boyd KE, Farnham PJ. Myc versus USF: discrimination at the cad gene is determined by core promoter elements. Mol Cell Biol. 1997;17(5):2529–2537.

36

Carvajal LA, Hamard PJ, Tonnessen C, Manfredi JJ. E2F7, a novel target, is up-regulated by p53 and mediates DNA damage-dependent transcriptional repression. Gene Dev. 2012;26(14):1533–1545.

37

Jiang P, Du WJ, Wu MA. Regulation of the pentose phosphate pathway in cancer. Protein Cell. 2014;5(18):592–602.

38

Li S, Lu Y, Peng B, Ding J. Crystal structure of human phosphoribosylpyrophosphate synthetase 1 reveals a novel allosteric site. Biochem J. 2007;401(1):39–47.

39

Qian X, Li X, Tan L, et al. Conversion of PRPS hexamer to monomer by AMPK-mediated phosphorylation inhibits nucleotide synthesis in response to energy stress. Cancer Discov. 2018;8(1):94–107.

40

Jing X, Wang XJ, Zhang T, et al. Cell-cycle-dependent phosphorylation of PRPS1 fuels nucleotide synthesis and promotes tumorigenesis. Cancer Res. 2019;79(28):4650–4664.

41

Li X, Qian X, Peng LX, et al. A splicing switch from ketohexokinase-C to ketohexokinase-A drives hepatocellular carcinoma formation. Nat Cell Biol. 2016;18(5):561–571.

42

Li XJ, Qian X, Lu ZM. Fructokinase A acts as a protein kinase to promote nucleotide synthesis. Cell Cycle. 2016;15(20):2689–2690.

43

Aoki T, Weber G. Carbamoyl phosphate synthetase (Glutamine-Hydrolyzing) - increased activity in cancer-cells. Science. 1981;212(13):463–465.

44

Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–484.

45

Issam BS, Jessica JH, John MA, Brendan DM. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science. 2013;339(6125):1323–1328.

46

Sigoillot FD, Kotsis DH, Serre V, Sigoillot SM, Evans DR, Guy HI. Nuclear localization and mitogen-activated protein kinase phosphorylation of the multifunctional protein CAD. J Biol Chem. 2005;280(10):25611–25620.

47

Sigoillot FD, Berkowski JA, Sigoillot SM, Kotsis DH, Guy HI. Cell cycle-dependent regulation of pyrimidine biosynthesis. J Biol Chem. 2003;278(34):3403–3409.

48

Sigoillot FD, Kotsis DH, Masko EM, Bame M, Evans DR, Evans HI. Protein kinase C modulates the up-regulation of the pyrimidine biosynthetic complex, CAD, by MAP kinase. Front Biosci. 2007;12(4):3892–3898.

49

Katherine MA, Zhang G, Li H, et al. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep. 2013;3(25):1252–1265.

50

Chon J, Stover PJ, Field MS. Targeting nuclear thymidylate biosynthesis. Mol Aspect Med. 2017;53(16):48–56.

51

Moloy TG, Chen GA, Balabhadrapatruni VSKC, et al. Role and regulation of coordinately expressed de novo purine biosynthetic enzymes PPAT and PAICS in lung cancer. Oncotarget. 2015;6(27):23445–23461.

52

Ridder D, Schindeldecker M, Berndt K, et al. Key enzymes in pyrimidine synthesis, CAD and CPS1, predict prognosis in hepatocellular carcinoma. Cancers. 2021;59(1):1722–1727.

53

Chen JN, Yu Y, Li H, et al. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Mol Cancer. 2019;18(33):1–16.

54

Qiu ZP, Guo WJ, Wang QF, et al. MicroRNA-124 reduces the pentose phosphate pathway and proliferation by targeting PRPS1 and RPIA mRNAs in human colorectal cancer cells. Gastroenterol. 2015;14(10):1587–1598.

55

Zhang X, Li F, Zhou Y, et al. Long non-coding RNA AFAP1-AS1 promotes tumor progression and invasion by regulating the miR-2110/Sp1 axis in triple negative breast cancer. Oncol. 2020;11(10):101–132.

56

Li B, Li H, Bai Y, et al. Negative feedback-defective PRPS1 mutants drive thiopurine resistance in relapsed childhood ALL. Nat Med. 2015;21(6):563–571.

57

Joseph TM, Armand B, Christine RC, Hollis DS, Nouri N. Revisiting the role of dihydroorotate dehydrogenase as a therapeutic target for cancer. Pharmacol Ther. 2019;195(6):111–131.

58

Wang X, Yang K, Wu Q, et al. Targeting pyrimidine synthesis accentuates molecular therapy response in glioblastoma stem cells. Sci Transl Med. 2019;11(504):4972.

59

Patricia C, Zhang L, Michael U, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164–172.

60

Brown KK, Spinelli JB, Asara JM, Toker A. Adaptive reprogramming of de novo pyrimidine synthesis is a metabolic vulnerability in triple-negative breast cancer. Cancer Discov. 2017;7(4):391–399.

61

He YC, Cao J. Chen JW, Pan DY; Zhou YK. Influence of methionine/valine-depleted enteral nutrition on nucleic acid and protein metabolism in tumor-bearing rats. World J Gastroenterol. 2003;9(4):145–148.

62

Vultaggio-Poma V, Sarti AC, Di Virgilio F. Extracellular ATP: a feasible target for cancer therapy. Cells. 2020;9(11):2496.

63

Naffouje R, Grover P, Yu H, et al. Anti-tumor potential of IMP dehydrogenase inhibitors: a century-long story. Cancers (Basel). 2019;11(9):1346.

64

Koch J, Mayr JA, Alhaddad B, et al. CAD mutations and uridine-responsive epileptic encephalopathy. Brain. 2017;140(2):279–286.

Genes & Diseases
Pages 2331-2338
Cite this article:
Chen J, Yang S, Li Y, et al. De novo nucleotide biosynthetic pathway and cancer. Genes & Diseases, 2023, 10(6): 2331-2338. https://doi.org/10.1016/j.gendis.2022.04.018

376

Views

2

Downloads

14

Crossref

14

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 25 March 2022
Accepted: 18 April 2022
Published: 16 May 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return