AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The transcriptional regulators of virulence for Pseudomonas aeruginosa: Therapeutic opportunity and preventive potential of its clinical infections

Xiaolong Shaoa,b,( )Chunyan YaobYiqing DingbHaiyan HucGuoliang QianaMingliang HebXin Dengb,d,e( )
College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
School of Pharmaceutical Sciences, Sun Yat-Sen University, University Town, Guangzhou, Guangdong 510006, China
Tung Biomedical Sciences Centre, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong 518057, China

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

In Pseudomonas aeruginosa (P. aeruginosa), transcription factors (TFs) are important mediators in the genetic regulation of adaptability and pathogenicity to respond to multiple environmental stresses and host defences. The P. aeruginosa genome harbours 371 putative TFs; of these, about 70 have been shown to regulate virulence-associated phenotypes by binding to the promoters of their target genes. Over the past three decades, several techniques have been applied to identify TF binding sites on the P. aeruginosa genome, and an atlas of TF binding patterns has been mapped. The virulence-associated regulons of TFs show complex crosstalk in P. aeruginosa’s regulatory network. In this review, we summarise the recent literature on TF regulatory networks involved in the quorum-sensing system, biofilm formation, pyocyanin synthesis, motility, the type Ⅲ secretion system, the type Ⅵ secretion system, and oxidative stress responses. We discuss future perspectives that could provide insights and targets for preventing clinical infections caused by P. aeruginosa based on the global regulatory network of transcriptional regulators.

References

1

Deretic V, Schurr MJ, Yu H. Pseudomonas aeruginosa, mucoidy and the chronic infection phenotype in cystic fibrosis. Trends Microbiol. 1995;3(9):351-356.

2

Impey RE, Panjikar S, Hall CJ, et al. Identification of two dihydrodipicolinate synthase isoforms from Pseudomonas aeruginosa that differ in allosteric regulation. FEBS J. 2020;287(2):386-400.

3

Kostylev M, Kim DY, Smalley NE, Salukhe I, Greenberg EP, Dandekar AA. Evolution of the Pseudomonas aeruginosa quorum-sensing hierarchy. Proc Natl Acad Sci U S A. 2019;116(14):7027-7032.

4

Liu Y, Ling L, Wong SH, et al. Outcomes of respiratory viral-bacterial co-infection in adult hospitalized patients. EClinicalMedicine. 2021;37:100955.

5

Qu J, Cai Z, Liu Y, et al. Persistent bacterial coinfection of a COVID-19 patient caused by a genetically adapted Pseudomonas aeruginosa chronic colonizer. Front Cell Infect Microbiol. 2021;11:641920.

6

Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S. A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev Cell. 2004;7(5):745-754.

7

Hauser AR. The type Ⅲ secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol. 2009;7(9):654-665.

8

Hogardt M, Heesemann J. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Curr Top Microbiol Immunol. 2013;358:91-118.

9

Olejnickova K, Hola V, Ruzicka F. Catheter-related infections caused by Pseudomonas aeruginosa: virulence factors involved and their relationships. Pathog Dis. 2014;72(2):87-94.

10

Schuster M, Greenberg EP. A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol. 2006;296(2-3):73-81.

11

Smith RS, Iglewski BH. P. Aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol. 2003;6(1):56-60.

12

Jimenez PN, Koch G, Thompson JA, Xavier KB, Cool RH, Quax WJ. The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 2012;76(1):46-65.

13

Chastre J, Wunderink R, Prokocimer P, Lee M, Kaniga K, Friedland I. Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: a multicenter, randomized study. Crit Care Med. 2008;36(4):1089-1096.

14

Luyt CE, Aubry A, Lu Q, et al. Imipenem, meropenem, or doripenem to treat patients with Pseudomonas aeruginosa ventilator-associated pneumonia. Antimicrob Agents Chemother. 2014;58(3):1372-1380.

15

Walkty A, Adam H, Baxter M, et al. In vitro activity of plazomicin against 5,015 gram-negative and gram-positive clinical isolates obtained from patients in canadian hospitals as part of the CANWARD study, 2011-2012. Antimicrob Agents Chemother. 2014;58(5):2554-2563.

16

Pankuch GA, Lin G, Kubo A, Armstrong ES, Appelbaum PC, Kosowska-Shick K. Activity of ACHN-490 tested alone and in combination with other agents against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2011;55(5):2463-2465.

17

Cigana C, Bernardini F, Facchini M, et al. Efficacy of the novel antibiotic POL7001 in preclinical models of Pseudomonas aeruginosa pneumonia. Antimicrob Agents Chemother. 2016;60(8):4991-5000.

18

Shao X, Xie Y, Zhang Y, et al. Novel therapeutic strategies for treating Pseudomonas aeruginosa infection. Expet Opin Drug Discov. 2020;15(12):1403-1423.

19

Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FS. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2016;44(D1):D646-D653.

20

Gilbert KB, Kim TH, Gupta R, Greenberg EP, Schuster M. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR. Mol Microbiol. 2009;73(6):1072-1085.

21

Bartlett A, O’Malley RC, Huang SC, et al. Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat Protoc. 2017;12(8):1659-1672.

22

Trouillon J, Imbert L, Villard AM, Vernet T, Attrée I, Elsen S. Determination of the two-component systems regulatory network reveals core and accessory regulations across Pseudomonas aeruginosa lineages. Nucleic Acids Res. 2021;49(20):11476-11490.

23

Trouillon J, Sentausa E, Ragno M, et al. Species-specific recruitment of transcription factors dictates toxin expression. Nucleic Acids Res. 2020;48(5):2388-2400.

24

Jaini S, Lyubetskaya A, Gomes A, et al. Transcription factor binding site mapping using ChIP-seq. Microbiol Spectr. 2014;2(2):1-21.

25

Kang H, Gan J, Zhao J, et al. Crystal structure of Pseudomonas aeruginosa RsaL bound to promoter DNA reaffirms its role as a global regulator involved in quorum-sensing. Nucleic Acids Res. 2017;45(2):699-710.

26

Huang H, Shao X, Xie Y, et al. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat Commun. 2019;10(1):2931.

27

Shao X, Zhang X, Zhang Y, et al. RpoN-dependent direct regulation of quorum sensing and the type Ⅵ secretion system in Pseudomonas aeruginosa PAO1. J Bacteriol. 2018;200(16):e00205-e00218.

28

Liang H, Deng X, Li X, Ye Y, Wu M. Molecular mechanisms of master regulator VqsM mediating quorum-sensing and antibiotic resistance in Pseudomonas aeruginosa. Nucleic Acids Res. 2014;42(16):10307-10320.

29

Jones CJ, Newsom D, Kelly B, et al. ChIP-Seq and RNA-Seq reveal an AmrZ-mediated mechanism for cyclic di-GMP synthesis and biofilm development by Pseudomonas aeruginosa. PLoS Pathog. 2014;10(3):e1003984.

30

An SQ, Valvano MA, Yu YH, Webb JS, Lopez Campos G. An improved bind-n-seq strategy to determine protein-DNA interactions validated using the bacterial transcriptional regulator YipR. BMC Microbiol. 2020;20(1):1.

31

Wang T, Sun W, Fan L, et al. An atlas of the binding specificities of transcription factors in Pseudomonas aeruginosa directs prediction of novel regulators in virulence. Elife. 2021;10:e61885.

32

Liang H, Deng X, Ji Q, Sun F, Shen T, He C. The Pseudomonas aeruginosa global regulator VqsR directly inhibits QscR to control quorum-sensing and virulence gene expression. J Bacteriol. 2012;194(12):3098-3108.

33

Kong W, Zhao J, Kang H, et al. ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa. Nucleic Acids Res. 2015;43(17):8268-8282.

34

Zhao J, Yu X, Zhu M, et al. Structural and molecular mechanism of CdpR involved in quorum-sensing and bacterial virulence in Pseudomonas aeruginosa. PLoS Biol. 2016;14(4):e1002449.

35

Song Y, Yang C, Chen G, et al. Molecular insights into the master regulator CysB-mediated bacterial virulence in Pseudomonas aeruginosa. Mol Microbiol. 2019;111(5):1195-1210.

36

Sun L, Chi X, Feng Z, et al. phz1 contributes much more to phenazine-1-carboxylic acid biosynthesis than phz2 in Pseudomonas aeruginosa rpoS mutant. J Basic Microbiol. 2019;59(9):914-923.

37

Galán-Vásquez E., Luna-Olivera B.C., Ramírez-Ibáñez M., Martínez-Antonio A. RegulomePA: a database of transcriptional regulatory interactions in Pseudomonas aeruginosa PAO1. Database (Oxford). 2020;2020:baaa106.

38

Rajput A, Tsunemoto H, Sastry AV, et al. Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators. Nucleic Acids Res. 2022;50(7):3658-3672.

39

Lee J, Wu J, Deng Y, et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol. 2013;9(5):339-343.

40

Schuster M, Lostroh CP, Ogi T, Greenberg EP. Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol. 2003;185(7):2066-2079.

41

Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol. 2003;185(7):2080-2095.

42

Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319-346.

43

Williams P, Camara M. Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol. 2009;12(2):182-191.

44

Schuster M, Sexton DJ, Diggle SP, Greenberg EP. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu Rev Microbiol. 2013;67:43-63.

45

Albus AM, Pesci EC, Runyen-Janecky LJ, West SE, Iglewski BH. H. Vfr controls quorum sensing in Pseudomonas aeruginosa. J Bacteriol. 1997;179(12):3928-3935.

46

Balasubramanian D, Kumari H, Jaric M, et al. Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response. Nucleic Acids Res. 2014;42(2):979-998.

47

Carty NL, Layland N, Colmer-Hamood JA, Calfee MW, Pesci EC, Hamood AN. PtxR modulates the expression of QS-controlled virulence factors in the Pseudomonas aeruginosa strain PAO1. Mol Microbiol. 2006;61(3):782-794.

48

Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2001;98(5):2752-2757.

49

Siehnel R, Traxler B, An DD, Parsek MR, Schaefer AL, Singh PK. A unique regulator controls the activation threshold of quorum-regulated genes in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2010;107(17):7916-7921.

50

Li S, Gong X, Yin L, et al. Acetylation of CspC controls the las quorum-sensing system through translational regulation of rsaL in Pseudomonas aeruginosa. mBio. 2022;13(3):e0054722.

51

Zhang Y, Zhou CM, Pu Q, et al. Pseudomonas aeruginosa regulatory protein AnvM controls pathogenicity in anaerobic environments and impacts host defense. mBio. 2019;10(4):e01362-19.

52

Sana TG, Lomas R, Gimenez MR, et al. Differential modulation of quorum sensing signaling through QslA in Pseudomonas aeruginosa strains PAO1 and PA14. J Bacteriol. 2019;201(21):e00362-19.

53

Kojic M, Jovcic B, Vindigni A, Odreman F, Venturi V. Novel target genes of PsrA transcriptional regulator of Pseudomonas aeruginosa. FEMS Microbiol Lett. 2005;246(2):175-181.

54

Wells G, Palethorpe S, Pesci EC. PsrA controls the synthesis of the Pseudomonas aeruginosa quinolone signal via repression of the FadE homolog, PA0506. PLoS One. 2017;12(12):e0189331.

55

Mahajan-Miklos S, Tan MW, Rahme LG, Ausubel FM. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell. 1999;96(1):47-56.

56

Wilson R, Sykes DA, Watson D, Rutman A, Taylor GW, Cole PJ. Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun. 1988;56(9):2515-2517.

57

Rampioni G, Schuster M, Greenberg EP, et al. RsaL provides quorum sensing homeostasis and functions as a global regulator of gene expression in Pseudomonas aeruginosa. Mol Microbiol. 2007;66(6):1557-1565.

58

Whiteley M, Greenberg EP. Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol. 2001;183(19):5529-5534.

59

Li C, Wally H, Miller SJ, Lu CD. The multifaceted proteins MvaT and MvaU, members of the H-NS family, control arginine metabolism, pyocyanin synthesis, and prophage activation in Pseudomonas aeruginosa PAO1. J Bacteriol. 2009;191(20):6211-6218.

60

Cai Z, Yang F, Shao X, et al. ECF sigma factor HxuI is critical for in vivo fitness of Pseudomonas aeruginosa during infection. Microbiol Spectr. 2022;10(1):e0162021.

61

Liang H, Duan J, Sibley CD, Surette MG, Duan K. Identification of mutants with altered phenazine production in Pseudomonas aeruginosa. J Med Microbiol. 2011;60(Pt 1):22-34.

62

Lin L, Xu K, Shen D, Chou SH, Gomelsky M, Qian G. Antifungal weapons of Lysobacter, a mighty biocontrol agent. Environ Microbiol. 2021;23(10):5704-5715.

63

Starnbach MN, Lory S. The fliA (rpoF) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin synthesis. Mol Microbiol. 1992;6(4):459-469.

64

Dasgupta N, Wolfgang MC, Goodman AL, et al. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol. 2003;50(3):809-824.

65

Frisk A, Jyot J, Arora SK, Ramphal R. Identification and functional characterization of flgM, a gene encoding the anti-sigma 28 factor in Pseudomonas aeruginosa. J Bacteriol. 2002;184(6):1514-1521.

66

Dasgupta N, Ferrell EP, Kanack KJ, West SE, Ramphal R. fleQ, the gene encoding the major flagellar regulator of Pseudomonas aeruginosa, is sigma70 dependent and is downregulated by Vfr, a homolog of Escherichia coli cyclic AMP receptor protein. J Bacteriol. 2002;184(19):5240-5250.

67

Chanchal, Banerjee P, Raghav S, Goswami HN, Jain D. The antiactivator FleN uses an allosteric mechanism to regulate sigma(54)-dependent expression of flagellar genes in Pseudomonas aeruginosa. Sci Adv. 2021;7(43):eabj1792.

68

Petrova OE, Schurr JR, Schurr MJ, Sauer K. The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage-mediated lysis and DNA release during biofilm development through PhdA. Mol Microbiol. 2011;81(3):767-783.

69

Wang D, Zhang X, Yin L, et al. RplI interacts with 5’ UTR of exsA to repress its translation and type Ⅲ secretion system in Pseudomonas aeruginosa. PLoS Pathog. 2022;18(1):e1010170.

70

Ma Y, Liu Y, Bi Y, et al. OsaR (PA0056) functions as a repressor of the gene fleQ encoding an important motility regulator in Pseudomonas aeruginosa. J Bacteriol. 2021;203(20):e0014521.

71

Baraquet C, Harwood CS. FleQ DNA binding consensus sequence revealed by studies of FleQ-dependent regulation of biofilm gene expression in Pseudomonas aeruginosa. J Bacteriol. 2015;198(1):178-186.

72

Hickman JW, Harwood CS. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol. 2008;69(2):376-389.

73

Baraquet C, Murakami K, Parsek MR, Harwood CS. The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res. 2012;40(15):7207-7218.

74

Wu W, Badrane H, Arora S, Baker HV, Jin S. MucA-mediated coordination of type Ⅲ secretion and alginate synthesis in Pseudomonas aeruginosa. J Bacteriol. 2004;186(22):7575-7585.

75

Jones AK, Fulcher NB, Balzer GJ, et al. Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling. J Bacteriol. 2010;192(21):5709-5717.

76

Chand NS, Lee JS, Clatworthy AE, Golas AJ, Smith RS, Hung DT. The sensor kinase KinB regulates virulence in acute Pseudomonas aeruginosa infection. J Bacteriol. 2011;193(12):2989-2999.

77

Mukherjee S, Jemielita M, Stergioula V, Tikhonov M, Bassler BL. Photosensing and quorum sensing are integrated to control Pseudomonas aeruginosa collective behaviors. PLoS Biol. 2019;17(12):e3000579.

78

Romero M, Silistre H, Lovelock L, et al. Genome-wide mapping of the RNA targets of the Pseudomonas aeruginosa riboregulatory protein RsmN. Nucleic Acids Res. 2018;46(13):6823-6840.

79

Mikkelsen H, Ball G, Giraud C, Filloux A. Expression of Pseudomonas aeruginosa CupD fimbrial genes is antagonistically controlled by RcsB and the EAL-containing PvrR response regulators. PLoS One. 2009;4(6):e6018.

80

Hauser AR, Cobb E, Bodi M, et al. Type Ⅲ protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit Care Med. 2002;30(3):521-528.

81

Roy-Burman A, Savel RH, Racine S, et al. Type Ⅲ protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J Infect Dis. 2001;183(12):1767-1774.

82

Crouch Brewer S, Wunderink RG, Jones CB, Leeper KV Jr. Ventilator-associated pneumonia due to Pseudomonas aeruginosa. Chest. 1996;109(4):1019-1029.

83

Bordi C, Lamy MC, Ventre I, et al. Regulatory RNAs and the HptB/RetS signalling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol. 2010;76(6):1427-1443.

84

Williams McMackin EA, Marsden AE, Yahr TL. H-Ns. Family members MvaT and MvaU regulate the Pseudomonas aeruginosa type Ⅲ secretion system. J Bacteriol. 2019;201(14):e00054-19.

85

Li K, Xu C, Jin Y, et al. SuhB is a regulator of multiple virulence genes and essential for pathogenesis of Pseudomonas aeruginosa. mBio. 2013;4(6):e00419-13.

86

Li K, Yang G, Debru AB, et al. SuhB regulates the motile-sessile switch in Pseudomonas aeruginosa through the Gac/Rsm pathway and c-di-GMP signaling. Front Microbiol. 2017;8:1045.

87

Xia Y, Xu C, Wang D, et al. YbeY controls the type Ⅲ and type Ⅵ secretion systems and biofilm formation through RetS in Pseudomonas aeruginosa. Appl Environ Microbiol. 2020;87(5):e02171-20.

88

Jin Y, Zhang M, Zhu F, et al. NrtR regulates the type Ⅲ secretion system through cAMP/Vfr pathway in Pseudomonas aeruginosa. Front Microbiol. 2019;10:85.

89

Intile PJ, Balzer GJ, Wolfgang MC, Yahr TL. The RNA helicase DeaD stimulates ExsA translation to promote expression of the Pseudomonas aeruginosa type Ⅲ secretion system. J Bacteriol. 2015;197(16):2664-2674.

90

Janssen KH, Corley JM, Djapgne L, et al. Hfq and sRNA 179 inhibit expression of the Pseudomonas aeruginosa cAMP-Vfr and type Ⅲ secretion regulons. mBio. 2020;11(3):e00363-20.

91

Li S, Weng Y, Li X, et al. Acetylation of the CspA family protein CspC controls the type Ⅲ secretion system through translational regulation of exsA in Pseudomonas aeruginosa. Nucleic Acids Res. 2021;49(12):6756-6770.

92

Mougous JD, Cuff ME, Raunser S, et al. A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science. 2006;312(5779):1526-1530.

93

Marden JN, Diaz MR, Walton WG, et al. An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2013;110(37):15055-15060.

94

Zhang X, Yin L, Liu Q, et al. NrtR mediated regulation of H1-T6SS in Pseudomonas aeruginosa. Microbiol Spectr. 2022;10(1):e0185821.

95

Zhou T, Huang J, Liu Z, Lin Q, Xu Z, Zhang LH. The two-component system FleS/FleR represses H1-T6SS via cyclic di-GMP signaling in Pseudomonas aeruginosa. Appl Environ Microbiol. 2022;88(2):e0165521.

96

Chen PR, Bae T, Williams WA, et al. An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus. Nat Chem Biol. 2006;2(11):591-595.

97

Fuangthong M, Helmann JD. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc Natl Acad Sci U S A. 2002;99(10):6690-6695.

98

Fujimoto DF, Higginbotham RH, Sterba KM, et al. Staphylococcus aureus SarA is a regulatory protein responsive to redox and pH that can support bacteriophage lambda integrase-mediated excision/recombination. Mol Microbiol. 2009;74(6):1445-1458.

99

Palma M, Zurita J, Ferreras JA, et al. Pseudomonas aeruginosa SoxR does not conform to the archetypal paradigm for SoxR-dependent regulation of the bacterial oxidative stress adaptive response. Infect Immun. 2005;73(5):2958-2966.

100

Dietrich LE, Teal TK, Price-Whelan A, Newman DK. Redox-active antibiotics control gene expression and community behavior in divergent bacteria. Science. 2008;321(5893):1203-1206.

101

Vinckx T, Matthijs S, Cornelis P. Loss of the oxidative stress regulator OxyR in Pseudomonas aeruginosa PAO1 impairs growth under iron-limited conditions. FEMS Microbiol Lett. 2008;288(2):258-265.

102

Ochsner UA, Vasil ML, Alsabbagh E, Parvatiyar K, Hassett DJ. Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: OxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol. 2000;182(16):4533-4544.

103

Vinckx T, Wei Q, Matthijs S, Cornelis P. The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. Microbiology (Read). 2010;156(Pt 3):678-686.

104

Lan L, Murray TS, Kazmierczak BI, He C. Pseudomonas aeruginosa OspR is an oxidative stress sensing regulator that affects pigment production, antibiotic resistance and dissemination during infection. Mol Microbiol. 2010;75(1):76-91.

105

Chen H, Hu J, Chen PR, et al. The Pseudomonas aeruginosa multidrug efflux regulator MexR uses an oxidation-sensing mechanism. Proc Natl Acad Sci U S A. 2008;105(36):13586-13591.

106

Deng X, Weerapana E, Ulanovskaya O, et al. Proteome-wide quantification and characterization of oxidation-sensitive cysteines in pathogenic bacteria. Cell Host Microbe. 2013;13(3):358-370.

107

Xuan G, Lv C, Xu H, et al. Sulfane sulfur regulates LasR-mediated quorum sensing and virulence in Pseudomonas aeruginosa PAO1. Antioxidants. 2021;10(9):1498.

108

Kafle P, Amoh AN, Reaves JM, et al. Molecular insights into the impact of oxidative stress on the quorum-sensing regulator protein LasR. J Biol Chem. 2016;291(22):11776-11786.

109

Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet. 2014;15(4):272-286.

110

Rosenberg G, Riquelme S, Prince A, Avraham R. Immunometabolic crosstalk during bacterial infection. Nat Microbiol. 2022;7(4):497-507.

111

Bartell JA, Blazier AS, Yen P, et al. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis. Nat Commun. 2017;8:14631.

112

Panayidou S, Georgiades K, Christofi T, Tamana S, Promponas VJ, Apidianakis Y. Pseudomonas aeruginosa core metabolism exerts a widespread growth-independent control on virulence. Sci Rep. 2020;10(1):9505.

113

Chavali AK, D’Auria KM, Hewlett EL, Pearson RD, Papin JA. A metabolic network approach for the identification and prioritization of antimicrobial drug targets. Trends Microbiol. 2012;20(3):113-123.

114

Mienda BS, Salihu R, Adamu A, Idris S. Genome-scale metabolic models as platforms for identification of novel genes as antimicrobial drug targets. Future Microbiol. 2018;13:455-467.

115

Oberhardt MA, Puchałka J, Fryer KE, Martins dos Santos VA, Papin JA. Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol. 2008;190(8):2790-2803.

116

Müh U, Schuster M, Heim R, Singh A, Olson ER, Greenberg EP. Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob Agents Chemother. 2006;50(11):3674-3679.

117

Starkey M, Lepine F, Maura D, et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog. 2014;10(8):e1004321.

118

Imperi F, Massai F, Facchini M, et al. Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc Natl Acad Sci U S A. 2013;110(18):7458-7463.

119

Borlee BR, Geske GD, Blackwell HE, Handelsman J. Identification of synthetic inducers and inhibitors of the quorum-sensing regulator LasR in Pseudomonas aeruginosa by high-throughput screening. Appl Environ Microbiol. 2010;76(24):8255-8258.

120

van Tilburg Bernardes E, Charron-Mazenod L, Reading DJ, Reckseidler-Zenteno SL, Lewenza S. Exopolysaccharide-repressing small molecules with antibiofilm and antivirulence activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2017;61(5):e01997-16.

121

Aiello D, Williams JD, Majgier-Baranowska H, et al. Discovery and characterization of inhibitors of Pseudomonas aeruginosa type Ⅲ secretion. Antimicrob Agents Chemother. 2010;54(5):1988-1999.

122

Zhu J, Cai X, Harris TL, et al. Disarming Pseudomonas aeruginosa virulence factor LasB by leveraging a Caenorhabditis elegans infection model. Chem Biol. 2015;22(4):483-491.

123

Abelyan N, Grabski H, Tiratsuyan S. In silico screening of flavones and its derivatives as potential inhibitors of quorum-sensing regulator LasR of Pseudomonas aeruginosa. Mol Biol. 2020;54(1):153-163.

124

Shaker B, Ahmad S, Thai TD, Eyun SI, Na D. Rational drug design for Pseudomonas aeruginosa PqsA enzyme: an in silico guided study to block biofilm formation. Front Mol Biosci. 2020;7:577316.

125

Vetrivel A, Natchimuthu S, Subramanian V, Murugesan R. High-throughput virtual screening for a new class of antagonist targeting LasR of Pseudomonas aeruginosa. ACS Omega. 2021;6(28):18314-18324.

126

Baloyi IT, Adeosun IJ, Yusuf AA, Cosa S. In silico and in vitro screening of antipathogenic properties of melianthus comosus (Vahl) against Pseudomonas aeruginosa. Antibiotics. 2021;10(6):679.

127

Tajani AS, Jangi E, Davodi M, et al. Anti-quorum sensing potential of ketoprofen and its derivatives against Pseudomonas aeruginosa: insights to in silico and in vitro studies. Arch Microbiol. 2021;203(8):5123-5132.

128

Behera SK, Panda AK, Mishra R, Mahanty A, Bisht SS. Structure based virtual screening and molecular dynamics of natural anti-biofilm compounds against SagS response regulator/sensor kinase in Pseudomonas aeruginosa. J Biomol Struct Dyn. 2022:1-16.

129

Deng X, Chen K, Luo GZ, et al. Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. 2015;43(13):6557-6567.

130

Shao X, Zhang W, Umar MI, et al. RNA G-quadruplex structures mediate gene regulation in bacteria. mBio. 2020;11(1):e02926-19.

131

Smith EE, Buckley DG, Wu Z, et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A. 2006;103(22):8487-8492.

132

Yang L, Jelsbak L, Marvig RL, et al. Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci U S A. 2011;108(18):7481-7486.

133

Hoffman LR, Kulasekara HD, Emerson J, et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros. 2009;8(1):66-70.

134

Folkesson A, Jelsbak L, Yang L, et al. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol. 2012;10(12):841-851.

135

Valentini M, Gonzalez D, Mavridou DA, Filloux A. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr Opin Microbiol. 2018;41:15-20.

136

Ahmed SAKS, Rudden M, Elias SM, et al. Pseudomonas aeruginosa PA80 is a cystic fibrosis isolate deficient in RhlRI quorum sensing. Sci Rep. 2021;11(1):5729.

137

Boşgelmez-Tinaz G, Ulusoy S. Characterization of N-butanoyl-L-homoserine lactone (C4-HSL) deficient clinical isolates of Pseudomonas aeruginosa. Microb Pathog. 2008;44(1):13-19.

138

Martínez-Carranza E, García-Reyes S, González-Valdez A, Soberón-Chávez G. Tracking the genome of four Pseudomonas aeruginosa isolates that have a defective Las quorum-sensing system, but are still virulent. Access Microbiol. 2020;2(7):acmi000132.

139

Shang Z, Wang H, Zhou S, Chu W. Characterization of N-Acyl-homoserine lactones (AHLs)-deficient clinical isolates of Pseudomonas aeruginosa. Indian J Microbiol. 2014;54(2):158-162.

140

Baker P, Hill PJ, Snarr BD, et al. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv. 2016;2(5):e1501632.

141

Das T, Simone M, Ibugo AI, Witting PK, Manefield M, Manos J. Glutathione enhances antibiotic efficiency and effectiveness of DNase Ⅰ in disrupting Pseudomonas aeruginosa biofilms while also inhibiting pyocyanin activity, thus facilitating restoration of cell enzymatic activity, confluence and viability. Front Microbiol. 2017;8:2429.

142

Singh N, Romero M, Travanut A, et al. Dual bioresponsive antibiotic and quorum sensing inhibitor combination nanoparticles for treatment of Pseudomonas aeruginosa biofilms in vitro and ex vivo. Biomater Sci. 2019;7(10):4099-4111.

Genes & Diseases
Pages 2049-2063
Cite this article:
Shao X, Yao C, Ding Y, et al. The transcriptional regulators of virulence for Pseudomonas aeruginosa: Therapeutic opportunity and preventive potential of its clinical infections. Genes & Diseases, 2023, 10(5): 2049-2063. https://doi.org/10.1016/j.gendis.2022.09.009

287

Views

3

Downloads

7

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 13 May 2022
Accepted: 21 September 2022
Published: 01 October 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return