AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Cervical cancer: a tale from HPV infection to PARP inhibitors

Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
Department of Oncoanaesthesia and Palliative Medicine, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
Epigenetics Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

Globally, cervical cancer (CxCa) ranks 4th common cancer among females and led to 569,847 incidences and 311,365 deaths in 2018. 80% of CxCa cases occur due to persistent infection with a high-risk subtype of human papillomavirus (HPV-16 and 18). Smoking, high parity, and co-infection with type 2 herpes simplex or HIV are other known risk factors for CxCa. Major histological subtypes are squamous (70%) and adenocarcinoma (25%). Presently, concurrent radiation plus cisplatin (CDDP)-based chemotherapy is the standard treatment for CxCa patients. However, CDDP resistance and toxic side effects limit its efficacy, leading to a poorer response rate and an expected overall survival ranging from 10 to 17.5 months. Reduced drug uptake, increased DNA damage repair, increased CDDP inactivation, and overexpressed Bcl-2 or caspase inhibition, are primarily accountable mechanisms for CDDP resistance and improving CDDP's efficacy remains the major challenge. Poly (ADP-ribosyl) polymerase-1, an effective mediator of nucleotide excision repair pathway, is involved in DNA repair as well as maintaining genomic stability and is significantly expressed in malignant lymphomas, hepatocellular-, cervical- and colorectal carcinoma, which has been approved effective in maintenance therapy and may serve as an effective target to enhance CDDP sensitivity in CxCa. Here, we summarize the etiology and epidemiology of and treatment for CxCa, the mechanism responsible for chemotherapy resistance, PARP inhibitor as a possible therapy for CxCa, and other possible chemotherapeutic options for CxCa treatment.

References

1

Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortalityworldwide for 36 cancers in 185 countries. Ca-Cancer J Clin. 2018;68(6): 394-424.

2

Cohen PA, Jhingran A, Oaknin A, et al. Cervical cancer. Lancet. 2019;393(10167): 169-182.

3

Goss PE, Strasser-Weippl K, Lee-Bychkovsky BL, et al. Challenges to effective cancer control in China, India, and Russia. Lancet Oncol. 2014;15(5): 489-538.

4

Giraldi G, Martinoli L, De Luca d'Alessandro E. The human papillomavirus vaccination: a review of the cost-effectiveness studies. Clin Ter. 2014;165(6): e426-e432.

5

Ferlay J, Shin HR, Bray F, et al. Estimates of worldwide burdenof cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12): 2893-2917.

6

zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer. 2002;2(5): 342-350.

7

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Human papillomaviruses. IARC Monogr Eval Carcinog Risks Hum. 1995: 64: 1-378.

8

Nakahara T, Kiyono T. Interplay between NF-κB/interferonsignaling and the genome replication of HPV. Future Virol. 2016;11(2): 141-155.

9

Wiest T, Schwarz E, Enders C, et al. Involvement of intactHPV16 E6/E7 gene expression in head and neck cancers withunaltered p53 status and perturbed pRb cell cycle control. Oncogene. 2002;21(10): 1510-1517.

10

Small W, Bacon MA, Bajaj A, et al. Cervical cancer: a global health crisis. Cancer. 2017;123(13): 2404-2412.

11

Doorbar J. The papillomavirus life cycle. J Clin Virol. 2005;32(Supp l): 7-15.

12

Cviko A, Briem B, Granter SR, et al. Adenoid basal carcinomas of the cervix: a unique morphological evolution with cell cycle correlates. Hum Pathol. 2000;31(6): 740-744.

13

Loureiro J, Oliva E. The spectrum of cervical glandular neoplasia and issues in differential diagnosis. Arch Pathol Lab Med. 2014;138(4): 453-483.

14

Goldstein NS, Ahmad E, Hussain M, et al. Endocervical glandular atypia: does a preneoplastic lesion of adenocarcinoma insitu exist? Am J Clin Pathol. 1998;110(2): 200-209.

15

Pirog EC, Kleter B, Olgac S, et al. Prevalence of human papillomavirus DNA in different histological subtypes of cervical adenocarcinoma. Am J Pathol. 2000;157(4): 1055-1062.

16

Fraval HN, Roberts JJ. Excision repair of cis-diamminedichloroplatinum(Ⅱ)-induced damage to DNA of Chinese hamster cells. Cancer Res.1979;39(5): 1793-1797.

17

Kumar L, Gupta S. Integrating chemotherapy in the management of cervical cancer: a critical appraisal. Oncology. 2016;91 (Suppl 1): 8-17.

18

Marth C, Landoni F, Mahner S, et al. Cervical cancer: ESMOclinical practice guidelines for diagnosis, treatment andfollow-up. Ann Oncol. 2017;28(suppl 4): iv72-iv83.

19

Imamura T, Izumi H, Nagatani G, et al. Interaction with p53 enhances binding of cisplatin-modified DNA by high mobility group 1 protein. J Biol Chem. 2001;276(10): 7534-7540.

20

Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4(4): 307-320.

21

Nakamura H, Taguchi A, Kawana K, et al. Therapeutic significance of targeting survivin in cervical cancer and possibility of combination therapy with TRAIL. Oncotarget. 2018;9(17): 13451-13461.

22

Eastman A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther. 1987;34(2): 155-166.

23

Trzaska S. Cisplatin. Chem Eng News. 2010;83(25): 52.

24

Rocha CRR, Silva MM, Quinet A, et al. DNA repair pathways andcisplatin resistance: an intimate relationship. Clinics. 2018;73(Suppl 1).

25

Yu J, Zhang L. The transcriptional targets of p53 in apoptosis control. Biochem Biophys Res Commun. 2005;331(3): 851-858.

26

Kohno K, Wang KY, Takahashi M, et al. Mitochondrial transcription factor A and mitochondrial genome as molecular targets for cisplatin-based cancer chemotherapy. Int J Mol Sci. 2015;16(8): 19836-19850.

27

Petrovic M, Todorovic D. Biochemical and molecular mechanisms of action of cisplatin in cancer cells. Med Biol. 2016;18(1): 12-18.

28
Ozols RF, Hamilton TC, Reed E, et al. High dose cisplatin anddrug resistance: clinical and laboratory correlations. In: Platinum and Other Metal Coordination Compounds in CancerChemotherapy. Boston, MA: Springer US; 1988: 197-206.
29

Masuda H, Tanaka T, Takahama U. Cisplatin generates superoxide anion by interaction with DNA in a cell-free system. Biochem Biophys Res Commun. 1994;203(2):1175-1180.

30

Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev. 1999;99(9):2467-2498.

31

Appella E, Anderson CW. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem. 2001;268(10):2764-2772.

32

Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265-7279.

33

Eliopoulos AG, Kerr DJ, Herod J, et al. The control of apoptosisand drug resistance in ovarian cancer: influence of p53 and Bcl-2. Oncogene. 1995;11(7):1217-1228.

34

Zhao H, Piwnica-Worms H. ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol. 2001;21(13):4129-4139.

35

Ozols RF, Corden BJ, Jacob J, et al. High-dose cisplatin in hypertonic saline. Ann Intern Med. 1984;100(1):19-24.

36

Shen DW, Pouliot LM, Hall MD, et al. Cisplatin resistance: acellular self-defense mechanism resulting from multipleepigenetic and genetic changes. Pharmacol Rev. 2012;64(3):706-721.

37

Heiger-Bernays WJ, Essigmann JM, Lippard SJ. Effect of the antitumor drug cis-diamminedichloroplatinum(Ⅱ) and related platinum complexes on eukaryotic DNA replication. Biochemistry. 1990;29(36):8461-8466.

38

Ali-Osman F, Berger MS, Rajagopal S, et al. Topoisomerase Ⅱinhibition and altered kinetics of formation and repair ofnitrosourea and cisplatin-induced DNA interstrand cross-linksand cytotoxicity in human glioblastoma cells 1. Cancer Res. 1993;53(23):5663-5668.

39

Kelland LR. Preclinical perspectives on platinum resistance. Drugs. 2000;59(Suppl 4):1-8. discussion 37-38.

40

Brozovic A. The relationship between platinum drug resistance and epithelialemesenchymal transition. Arch Toxicol. 2016; 91(2):605-619.

41

Roy M, Mukherjee S. Reversal of resistance towards cisplatin bycurcumin in cervical cancer cells. Asian Pac J Cancer PrevAPJCP. 2014;15(3):1403-1410.

42

Cui Y, König J, Buchholz U, et al. Drug Resistance and ATPdependent conjugate transport mediated by the apicalmultidrug resistance protein, MRP2, permanently expressedin human and canine cells. Mol Pharmacol. 1999;55(5):929-937.

43

Liedert B, Materna V, Schadendorf D, et al. Overexpression ofcMOAT (MRP2/ABCC2) is associated with decreased formationof platinum-DNA adducts and decreased G2-arrest in melanoma cells resistant to cisplatin. J Invest Dermatol. 2003;121(1):172-176.

44

Sakaeda T, Nakamura T, Hirai M, et al. MDR1 up-regulated byapoptotic stimuli suppresses apoptotic signaling. Pharm Res(N Y). 2002;19(9):1323-1329.

45

Chao CC. Decreased accumulation as a mechanism of resistance to cis-diamminedichloroplatinum(Ⅱ) in cervix carcinoma HeLa cells: relation to DNA repair. Mol Pharmacol. 1994;45(6):1137-1144.

46

Beretta GL, Gatti L, Tinelli S, et al. Cellular pharmacology of cisplatin in relation to the expression of human copper transporter CTR1 in different pairs of cisplatin-sensitive and -resistant cells. Biochem Pharmacol. 2004;68(2):283-291.

47

Ishida S, McCormick F, Smith-McCune K, et al. Enhancingtumor-specific uptake of the anticancer drug cisplatin with acopper chelator. Cancer Cell. 2010;17(6):574-583.

48

Dabholkar M, Vionnet J, Bostick-Bruton F, et al. Messenger RNAlevels of XPAC and ERCC1 in ovarian cancer tissue correlatewith response to platinum-based chemotherapy. J Clin Invest. 1994;94(2):703-708.

49

Wolf CR, Hayward IP, Lawrie SS, et al. Cellular heterogeneity and drug resistance in two ovarian adenocarcinoma cell lines derived from a single patient. Int J Cancer. 1987;39(6):695-702.

50

Krietsch J, Rouleau M, Pic É, et al. Reprogramming cellularevents by poly(ADP-ribose)-binding proteins. Mol Aspects Med. 2013;34(6):1066-1087.

51

Zhou BP, Hung MC. Novel targets of Akt, p21Cipl/WAF1, andMDM2. Semin Oncol. 2002;29(3 Suppl 11):62-70.

52

Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutat Res. 2001;478(1-2):23-43.

53

Svejstrup JQ. Mechanisms of transcription-coupled DNA repair. Nat Rev Mol Cell Biol. 2002;3(1):21-29.

54

Husain A, He G, Venkatraman ES, et al. BRCA1 up-regulation isassociated with repair-mediated resistance to cisdiamminedichloroplatinum(Ⅱ). Cancer Res.1998;58(6):1120-1123.

55

Michels J, Vitale I, Galluzzi L, et al. Cisplatin resistance associated with PARP hyperactivation. Cancer Res. 2013;73(7):2271-2280.

56

Langelier MF, Servent KM, Rogers EE, et al. A third zinc-bindingdomain of human poly(ADP-ribose) polymerase-1 coordinatesDNA-dependent enzyme activation. J Biol Chem. 2008;283(7):4105-4114.

57

Ratnam K, Low JA. Current development of clinical inhibitors of poly(ADP-ribose) polymerase in oncology. Clin Cancer Res. 2007;13(5):1383-1388.

58

Ménissier de Murcia J, Ricoul M, Tartier L, et al. Functionalinteraction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse. EMBO J. 2003;22(9):2255-2263.

59

de Murcia G, de Murcia JM. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci. 1994;19(4):172-176.

60

Ray Chaudhuri A, Nussenzweig A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol. 2017;18(10):610.

61

Altmeyer M, Messner S, Hassa PO, et al. Molecular mechanismof poly(ADP-ribosyl)ation by PARP1 and identification of lysineresidues as ADP-ribose acceptor sites. Nucleic Acids Res. 2009;37(11):3723-3738.

62

Masson M, Niedergang C, Schreiber V, et al. XRCC1 is specificallyassociated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol. 1998;18(6):3563-3571.

63

El-Khamisy SF, Masutani M, Suzuki H, et al. A requirement forPARP-1 for the assembly or stability of XRCC1 nuclear foci atsites of oxidative DNA damage. Nucleic Acids Res. 2003;31(19):5526-5533.

64

Poirier GG, de Murcia G, Jongstra-Bilen J, et al. Poly(ADPribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc Natl Acad Sci U S A. 1982;79(11):3423-3427.

65

Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet. 2008;9(8):619-631.

66

O'Sullivan CC, Moon DH, Kohn EC, et al. Beyond breast andovarian cancers: PARP inhibitors for BRCA mutation-associatedand BRCA-like solid tumors. Front Oncol. 2014;4:42.

67

Hassumi-Fukasawa MK, Miranda-Camargo FA, Zanetti BR, et al.Expression of BAG-1 and PARP-1 in precursor lesions and invasive cervical cancer associated with human papillomavirus(HPV). Pathol Oncol Res. 2012;18(4):929-937.

68

Zhang Q, Li Y, Li X, et al. PARP-1 Val762Ala polymorphism,CagA+ H. pylori infection and risk for gastric cancer in HanChinese population. Mol Biol Rep. 2008; 36(6). 2008;36(6):1461-1467.

69

Wang XG, Wang ZQ, Tong WM, et al. PARP1 Val762Ala polymorphism reduces enzymatic activity. Biochem Biophys Res Commun. 2007;354(1):122-126.

70

Ye F, Cheng Q, Hu Y, et al. PARP-1 Val762Ala polymorphism isassociated with risk of cervical carcinoma. PLoS One. 2012;7(5):e37446.

71

Purnell MR, Whish WJ. Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J. 1980;185(3):775-777.

72

Slade D. PARP and PARG inhibitors in cancer treatment. Genes Dev. 2020;34(5-6):360-394.

73

Criscuolo D, Morra F, Giannella R, et al. Identification of novelbiomarkers of homologous recombination defect in DNA repair to predict sensitivity of prostate cancer cells to PARP-Inhibitors.Int J Mol Sci. 2019;20(12):3100.

74

Zaremba T, Curtin NJ. PARP inhibitor development for systemiccancer targeting. Anti Cancer Agents Med Chem. 2007;7(5):515-523.

75

Bianchi A, Lopez S, Altwerger G, et al. PARP-1 activity (PAR) determines the sensitivity of cervical cancer to olaparib. Gynecol Oncol. 2019;155(1):144-150.

76

Prasad CB, Prasad SB, Yadav SS, et al. Olaparib modulates DNA repair efficiency, sensitizes cervical cancer cells to cisplatin and exhibits anti-metastatic property. Sci Rep. 2017;7(1):12876.

77

Tang M, Liu Q, Zhou L, et al. The poly (ADP-ribose) polymeraseinhibitor rucaparib suppresses proliferation and serves as aneffective radiosensitizer in cervical cancer. Invest N Drugs. 2019;37(1):65-75.

78

Mann M, Sharma A, Kumar S, et al. PARP-1 inhibitor modulateb-catenin signaling to enhance cisplatin sensitivity in cancercervix. Oncotarget. 2019;10(42):4262-4275.

79

Mann M, Chauhan SS, Bhatla N, et al. Better therapeutic targetto enhance cisplatin sensitivity in cervical cancer: PARP-1 or bcatenin citation. J Cancer Sci Clin Ther. 2020;4(3):266-282.

80

Godon C, Cordelières FP, Biard D, et al. PARP inhibition versusPARP-1 silencing: different outcomes in terms of single-strandbreak repair and radiation susceptibility. Nucleic Acids Res. 2008;36(13):4454-4464.

81

Tomao F, Santangelo G, Musacchio L, et al. Targeting cervicalcancer: is there a role for poly (ADP-ribose) polymerase inhibition? J Cell Physiol. 2020;235(6):5050-5058.

82

Wu Z, Cui P, Tao H, et al. The synergistic effect of PARP inhibitors and immune checkpoint inhibitors. Clin Med Insights Oncol. 2021;15:1-10.

83

Naud PS, Roteli-Martins CM, de Carvalho NS, et al. Sustainedefficacy, immunogenicity, and safety of the HPV-16/18 AS04-adjuvanted vaccine: final analysis of a long-term follow-upstudy up to 9.4 years post-vaccination. Hum Vaccines Immunother. 2014;10(8):2147-2162.

84

Armstrong EP. Prophylaxis of cervical cancer and related cervical disease: a review of the cost-effectiveness of vaccination against oncogenic HPV types. J Manag Care Pharm. 2010;16(3):217-230.

85

Kjaer SK, Nygård M, Dillner J, et al. A 12-year follow-up on thelong-term effectiveness of the quadrivalent human papillomavirus vaccine in 4 Nordic countries. Clin Infect Dis. 2018;66(3):339-345.

86

Bosch FX, de Sanjosé S. Chapter 1: human papillomavirus andcervical cancer–burden and assessment of causality. J Natl Cancer Inst Monogr. 2003;(31):3-13.

87

Clifford GM, Rana RK, Franceschi S, et al. Human papillomavirus genotype distribution in low-grade cervical lesions:comparison by geographic region and with cervical cancer. Cancer Epidemiol Biomarkers Prev. 2005;14(5):1157-1164.

88

Jansen KU, Shaw AR. Human papillomavirus vaccines and prevention of cervical cancer. Annu Rev Med. 2004;55:319-331.

89

Asif A Siddiqui M, Perry CM. Human papillomavirus quadrivalent (types 6, 11, 16, 18) recombinant vaccine (Gardasil): profile report. BioDrugs. 2006;20(5):313-316.

90

Huh WK, Joura EA, Giuliano AR, et al. Final efficacy, immunogenicity, and safety analyses of a nine-valent human papillomavirus vaccine in women aged 16-26 years: a randomised, double-blind trial. Lancet. 2017;390(10108):2143-2159.

91

Printz C. FDA approves Gardasil 9 for more types of HPV. Cancer. 2015;121(8):1156-1157.

92

Levin MJ, Moscicki AB, Song LY, et al. Safety and immunogenicity of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine in HIV-infected children 7 to 12 years old. J Acquir Immune Defic Syndr. 2010;55(2):197-204.

93

Telli ML, Ford JM. PARP inhibitors in breast cancer. Clin AdvHematol Oncol. 2010;8(9):629-635.

94

Hou WH, Chen SH, Yu X. Poly-ADP ribosylation in DNA damage response and cancer therapy. Mutat Res Rev Mutat Res. 2019;780:82-91.

95

Jordan P, Carmo-Fonseca M. Molecular mechanisms involved in cisplatin cytotoxicity. Cell Mol Life Sci. 2000;57(8-9):1229-1235.

96

Davar DH, Beumer J, Hamieh L, et al. Role of PARP inhibitors incancer biology and therapy. Curr Med Chem. 2012;19(23):3907-3921.

Genes & Diseases
Pages 1445-1456
Cite this article:
Mann M, Singh VP, Kumar L. Cervical cancer: a tale from HPV infection to PARP inhibitors. Genes & Diseases, 2023, 10(4): 1445-1456. https://doi.org/10.1016/j.gendis.2022.09.014

275

Views

3

Downloads

10

Crossref

5

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 05 June 2022
Revised: 28 August 2022
Accepted: 18 September 2022
Published: 10 November 2022
© 2022 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return