AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (948.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The emerging role of snoRNAs in human disease

Xinhai Zhanga,1Chenglong Wanga,1Shujun Xiab,1Fei Xiaoa,Jianping PengaYuxuan GaocFengbin YudChuandong Wanga( )Xiaodong Chena( )
Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200092, China
Ultrasound Department, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
Department of Orthopaedic Surgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
Department of Orthopaedics, The 72nd Group Army Hospital of PLA, Huzhou, Zhejiang 313000, China

1 These authors contributed equally to this work.

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

Small nucleolar RNAs (snoRNAs) play critical roles in various biological processes. The aberrant expression or depletion of snoRNAs is related to various diseases. In previous research, most of the snoRNAs were categorized as C/D box snoRNAs and H/ACA box snoRNAs, whose typical functions were thought of as regulation of 2’-O-ribose methylation and pseudouridylation of ribosome RNAs, respectively. However, in the past two decades, studies have revealed an increasing number of snoRNAs without specific targets or determined cell functions. These findings indicated that some potential roles of snoRNAs are still unknown. Numerous studies have indicated the correlation of snoRNAs with human diseases. SnoRNAs play various roles in abundant biological processes, and they have great potential in controlling human diseases. This new and rising field could benefit from investigations of the disease pathogenesis, biomarker identification, and the determination of novel therapeutic targets. This review summarized the reports on snoRNAs and the regulation of different diseases in recent years.

References

1

Weinberg RA, Penman S. Small molecular weight monodisperse nuclear RNA. J Mol Biol. 1968;38(3):289-304.

2

Zieve G, Penman S. Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell. 1976;8(1):19-31.

3

Maxwell ES, Fournier MJ. The small nucleolar RNAs. Annu Rev Biochem. 1995;64:897-934.

4

Gallagher RC, Pils B, Albalwi M, et al. Evidence for the role of PWCR1/HBII-85 C/D box small nucleolar RNAs in Prader-Willi syndrome. Am J Hum Genet. 2002;71(3):669-678.

5

Chang LS, Lin SY, Lieu AS, et al. Differential expression of human 5S snoRNA genes. Biochem Biophys Res Commun. 2002;299(2):196-200.

6

Balakin AG, Smith L, Fournier MJ. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell. 1996;86(5):823-834.

7

Ganot P, Caizergues-Ferrer M, Kiss T. The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. Genes Dev. 1997;11(7):941-956.

8

Bergeron D, Laforest C, Carpentier S, et al. SnoRNA copy regulation affects family size, genomic location and family abundance levels. BMC Genom. 2021;22(1):414.

9

Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar RNAs. Nucleic Acids Res. 2020;48(4):1627-1651.

10

Xu G, Yang F, Ding CL, et al. Small nucleolar RNA 113-1 suppresses tumorigenesis in hepatocellular carcinoma. Mol Cancer. 2014;13:216.

11

Fang X, Yang D, Luo H, et al. SNORD126 promotes HCC and CRC cell growth by activating the PI3K-AKT pathway through FGFR2. J Mol Cell Biol. 2017;9(3):243-255.

12

Xu W, Wu Y, Fang X, et al. SnoRD126 promotes the proliferation of hepatocellular carcinoma cells through transcriptional regulation of FGFR2 activation in combination with hnRNPK. Aging. 2021;13(9):13300-13317.

13

Wang H, Ma P, Liu P, et al. Small nucleolar RNA U2_19 promotes hepatocellular carcinoma progression by regulating Wnt/β-catenin signaling. Biochem Biophys Res Commun. 2018;500(2):351-356.

14

Wu L, Chang L, Wang H, et al. Clinical significance of C/D box small nucleolar RNA U76 as an oncogene and a prognostic biomarker in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol. 2018;42(1):82-91.

15

Cao P, Yang A, Wang R, et al. Germline duplication of SNORA18L5 increases risk for HBV-related hepatocellular carcinoma by altering localization of ribosomal proteins and decreasing levels of p53. Gastroenterology. 2018;155(2):542-556.

16

Liang J, Li G, Liao J, et al. Non-coding small nucleolar RNA SNORD17 promotes the progression of hepatocellular carcinoma through a positive feedback loop upon p53 inactivation. Cell Death Differ. 2022;29(5):988-1003.

17

Li C, Wu L, Liu P, et al. The C/D box small nucleolar RNA SNORD52 regulated by Upf1 facilitates Hepatocarcinogenesis by stabilizing CDK1. Theranostics. 2020;10(20):9348-9363.

18

Yang H, Lin P, Wu HY, et al. Genomic analysis of small nucleolar RNAs identifies distinct molecular and prognostic signature in hepatocellular carcinoma. Oncol Rep. 2018;40(6):3346-3358.

19

Xu L, Ziegelbauer J, Wang R, et al. Distinct profiles for mitochondrial t-RNAs and small nucleolar RNAs in locally invasive and metastatic colorectal cancer. Clin Cancer Res. 2016;22(3):773-784.

20

Okugawa Y, Toiyama Y, Toden S, et al. Clinical significance of SNORA42 as an oncogene and a prognostic biomarker in colorectal cancer. Gut. 2017;66(1):107-117.

21

Yoshida K, Toden S, Weng W, et al. SNORA21 - an oncogenic small nucleolar RNA, with a prognostic biomarker potential in human colorectal cancer. EBioMedicine. 2017;22:68-77.

22

Yuan S, Wu Y, Wang Y, et al. An oncolytic adenovirus expressing SNORD44 and GAS5 exhibits antitumor effect in colorectal cancer cells. Hum Gene Ther. 2017;28(8):690-700.

23

Yang X, Li Y, Li L, et al. SnoRNAs are involved in the progression of ulcerative colitis and colorectal cancer. Dig Liver Dis. 2017;49(5):545-551.

24

Zhang Z, Tao Y, Hua Q, et al. SNORA71A promotes colorectal cancer cell proliferation, migration, and invasion. BioMed Res Int. 2020;2020:8284576.

25

Liu Y, Zhao C, Sun J, et al. Overexpression of small nucleolar RNA SNORD1C is associated with unfavorable outcome in colorectal cancer. Bioengineered. 2021;12(1):8943-8952.

26

Huang L, Liang XZ, Deng Y, et al. Prognostic value of small nucleolar RNAs (snoRNAs) for colon adenocarcinoma based on RNA sequencing data. Pathol Res Pract. 2020;216(6):152937.

27

Li X, Luo Y, Liu L, et al. The long noncoding RNA ZFAS1 promotes the progression of glioma by regulating the miR-150-5p/PLP2 axis. J Cell Physiol. 2020;235(3):2937-2946.

28

Li T, Xie J, Shen C, et al. Amplification of long noncoding RNA ZFAS1 promotes metastasis in hepatocellular carcinoma. Cancer Res. 2015;75(15):3181-3191.

29

Li Z, Jiang X, Su Z, et al. Current insight into a cancer-implicated long noncoding RNA ZFAS1 and correlative functional mechanisms involved. Pathol Res Pract. 2018;214(10):1517-1523.

30

Zhou H, Wang F, Chen H, et al. Increased expression of long-noncoding RNA ZFAS1 is associated with epithelial-mesenchymal transition of gastric cancer. Aging. 2016;8(9):2023-2038.

31

Wu H, Qin W, Lu S, et al. Long noncoding RNA ZFAS1 promoting small nucleolar RNA-mediated 2’-O-methylation via NOP58 recruitment in colorectal cancer. Mol Cancer. 2020;19:95.

32

Pacilli A, Ceccarelli C, Treré D, et al. SnoRNA U50 levels are regulated by cell proliferation and rRNA transcription. Int J Mol Sci. 2013;14(7):14923-14935.

33

Tosar JP, García-Silva MR, Cayota A. Circulating SNORD57 rather than piR-54265 is a promising biomarker for colorectal cancer: common pitfalls in the study of somatic piRNAs in cancer. RNA. 2021;27(4):403-410.

34

Mai D, Ding P, Tan L, et al. PIWI-interacting RNA-54265 is oncogenic and a potential therapeutic target in colorectal adenocarcinoma. Theranostics. 2018;8(19):5213-5230.

35

Mai D, Zheng Y, Guo H, et al. Serum piRNA-54265 is a New Biomarker for early detection and clinical surveillance of Human Colorectal Cancer. Theranostics. 2020;10(19):8468-8478.

36

Dong XY, Guo P, Boyd J, et al. Implication of snoRNA U50 in human breast cancer. J Genet Genomics. 2009;36(8):447-454.

37

Su H, Xu T, Ganapathy S, et al. Elevated snoRNA biogenesis is essential in breast cancer. Oncogene. 2014;33(11):1348-1358.

38

Krishnan P, Ghosh S, Wang B, et al. Profiling of small nucleolar RNAs by next generation sequencing: potential new players for breast cancer prognosis. PLoS One. 2016;11(9):e0162622.

39

Langhendries JL, Nicolas E, Doumont G, et al. The human box C/D snoRNAs U3 and U8 are required for pre-rRNA processing and tumorigenesis. Oncotarget. 2016;7(37):59519-59534.

40

Li JN, Wang MY, Chen YT, et al. Expression of SnoRNA U50A is associated with better prognosis and prolonged mitosis in breast cancer. Cancers. 2021;13(24):6304.

41

Duan S, Luo X, Zeng H, et al. SNORA71B promotes breast cancer cells across blood-brain barrier by inducing epithelial-mesenchymal transition. Breast Cancer. 2020;27(6):1072-1081.

42

Hu T, Lu C, Xia Y, et al. Small nucleolar RNA SNORA71A promotes epithelial-mesenchymal transition by maintaining ROCK2 mRNA stability in breast cancer. Mol Oncol. 2022;16(9):1947-1965.

43

Teittinen KJ, Laiho A, Uusimäki A, et al. Expression of small nucleolar RNAs in leukemic cells. Cell Oncol. 2013;36:55-63.

44

Valleron W, Laprevotte E, Gautier EF, et al. Specific small nucleolar RNA expression profiles in acute leukemia. Leukemia. 2012;26(9):2052-2060.

45

Liuksiala T, Teittinen KJ, Granberg K, et al. Overexpression of SNORD114-3 marks acute promyelocytic leukemia. Leukemia. 2014;28:233-236.

46

Ronchetti D, Mosca L, Cutrona G, et al. Small nucleolar RNAs as new biomarkers in chronic lymphocytic leukemia. BMC Med Genom. 2013;6:27.

47

Zhou F, Liu Y, Rohde C, et al. AML1-ETO requires enhanced C/D box snoRNA/RNP formation to induce self-renewal and leukaemia. Nat Cell Biol. 2017;19(7):844-855.

48

Warner WA, Spencer DH, Trissal M, et al. Expression profiling of snoRNAs in normal hematopoiesis and AML. Blood Adv. 2018;2(2):151-163.

49

Pauli C, Liu Y, Rohde C, et al. Site-specific methylation of 18S ribosomal RNA by SNORD42A is required for acute myeloid leukemia cell proliferation. Blood. 2020;135(23):2059-2070.

50

Liao J, Yu L, Mei Y, et al. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol Cancer. 2010;9:198.

51

Mei YP, Liao JP, Shen J, et al. Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene. 2012;31(22):2794-2804.

52

Mannoor K, Shen J, Liao J, et al. Small nucleolar RNA signatures of lung tumor-initiating cells. Mol Cancer. 2014;13:104.

53

Gao L, Ma J, Mannoor K, et al. Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing. Int J Cancer. 2015;136(6):E623-E629.

54

Su J, Liao J, Gao L, et al. Analysis of small nucleolar RNAs in sputum for lung cancer diagnosis. Oncotarget. 2016;7(5):5131-5142.

55

Cui C, Liu Y, Gerloff D, et al. NOP10 predicts lung cancer prognosis and its associated small nucleolar RNAs drive proliferation and migration. Oncogene. 2021;40(5):909-921.

56

Martens-Uzunova ES, Hoogstrate Y, Kalsbeek A, et al. C/D-box snoRNA-derived RNA production is associated with malignant transformation and metastatic progression in prostate cancer. Oncotarget. 2015;6(19):17430-17444.

57

Crea F, Quagliata L, Michael A, et al. Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals SNORA55 as a driver of prostate cancer progression. Mol Oncol. 2016;10(5):693-703.

58

Yi C, Wan X, Zhang Y, et al. SNORA42 enhances prostate cancer cell viability, migration and EMT and is correlated with prostate cancer poor prognosis. Int J Biochem Cell Biol. 2018;102:138-150.

59

Xu B, Ye MH, Lv SG, et al. SNORD47, a box C/D snoRNA, suppresses tumorigenesis in glioblastoma. Oncotarget. 2017;8(27):43953-43966.

60

Xia XR, Li WC, Yu ZT, et al. Effects of small nucleolar RNA SNORD44 on the proliferation, apoptosis and invasion of glioma cells. Histochem Cell Biol. 2020;153(4):257-269.

61

Chen L, Han L, Wei J, et al. SNORD76, a box C/D snoRNA, acts as a tumor suppressor in glioblastoma. Sci Rep. 2015;5:8588.

62

Braunstein S, Raleigh D, Bindra R, et al. Pediatric high-grade glioma: current molecular landscape and therapeutic approaches. J Neuro Oncol. 2017;134(3):541-549.

63

Jha P, Agrawal R, Pathak P, et al. Genome-wide small noncoding RNA profiling of pediatric high-grade gliomas reveals deregulation of several miRNAs, identifies downregulation of snoRNA cluster HBII-52 and delineates H3F3A and TP53 mutant-specific miRNAs and snoRNAs. Int J Cancer. 2015;137(10):2343-2353.

64

Shang X, Song X, Wang K, et al. SNORD63 and SNORD96A as the non-invasive diagnostic biomarkers for clear cell renal cell carcinoma. Cancer Cell Int. 2021;21:56.

65

Correa P. Gastric cancer: overview. Gastroenterol Clin North Am. 2013;42(2):211-217.

66

Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. J Surg Oncol. 2013;107(3):230-236.

67

Zhang C, Zhao LM, Wu H, et al. C/D-box Snord105b promotes tumorigenesis in gastric cancer via ALDOA/C-myc pathway. Cell Physiol Biochem. 2018;45(6):2471-2482.

68

Liu CX, Qiao XJ, Xing ZW, et al. The SNORA21 expression is upregulated and acts as a novel independent indicator in human gastric cancer prognosis. Eur Rev Med Pharmacol Sci. 2018;22(17):5519-5524.

69

Qin Y, Zhou Y, Ge A, et al. Overexpression of SNORA21 suppresses tumorgenesis of gallbladder cancer in vitro and in vivo. Biomed Pharmacother. 2019;118:109266.

70

Cui L, Nakano K, Obchoei S, et al. Small nucleolar noncoding RNA SNORA23, up-regulated in human pancreatic ductal adenocarcinoma, regulates expression of spectrin repeat-containing nuclear envelope 2 to promote growth and metastasis of xenograft tumors in mice. Gastroenterology. 2017;153(1):292-306.

71

Xing L, Zhang X, Zhang X, et al. Expression scoring of a small-nucleolar-RNA signature identified by machine learning serves as a prognostic predictor for head and neck cancer. J Cell Physiol. 2020;235(11):8071-8084.

72

Zhu W, Niu J, He M, et al. SNORD89 promotes stemness phenotype of ovarian cancer cells by regulating Notch1-c-Myc pathway. J Transl Med. 2019;17:259.

73

Liu J, Liao X, Zhu X, et al. Identification of potential prognostic small nucleolar RNA biomarkers for predicting overall survival in patients with sarcoma. Cancer Med. 2020;9(19):7018-7033.

74

Pourebrahim R, Zhang Y, Liu B, et al. Integrative genome analysis of somatic p53 mutant osteosarcomas identifies Ets2-dependent regulation of small nucleolar RNAs by mutant p53 protein. Genes Dev. 2017;31(18):1847-1857.

75

Godel M, Morena D, Ananthanarayanan P, et al. Small nucleolar RNAs determine resistance to doxorubicin in human osteosarcoma. Int J Mol Sci. 2020;21(12):4500.

76

Cassidy SB, Schwartz S, Miller JL, et al. Prader-Willi syndrome. Genet Med. 2012;14(1):10-26.

77

Prader A. Ein syndrom von adipositas, kleinwuchs, kryptorchismus und oligophrenie nach myatonieartigem zustand im neugeborenenalter. Schweiz Med Wochenschr. 1956;86:1260-1261.

78

Bieth E, Eddiry S, Gaston V, et al. Highly restricted deletion of the SNORD116 region is implicated in Prader-Willi Syndrome. Eur J Hum Genet. 2015;23(2):252-255.

79

Tan Q, Potter KJ, Burnett LC, et al. Prader-willi-like phenotype caused by an atypical 15q11.2 microdeletion. Genes. 2020;11(2):128.

80

Ben-Porath I, Cedar H. Imprinting: focusing on the center. Curr Opin Genet Dev. 2000;10(5):550-554.

81

Nicholls RD, Knepper JL. Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genom Hum Genet. 2001;2:153-175.

82

Sahoo T, del Gaudio D, German JR, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet. 2008;40(6):719-721.

83

Peters J. Prader-Willi and snoRNAs. Nat Genet. 2008;40(6):688-689.

84

Galiveti CR, Raabe CA, Konthur Z, et al. Differential regulation of non-protein coding RNAs from Prader-Willi Syndrome locus. Sci Rep. 2014;4:6445.

85

Ding F, Li HH, Zhang S, et al. SnoRNA Snord116 (Pwcr1/MBII-85) deletion causes growth deficiency and hyperphagia in mice. PLoS One. 2008;3(3):e1709.

86

Polex-Wolf J, Lam BY, Larder R, et al. Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome. J Clin Invest. 2018;128(3):960-969.

87

Khor EC, Fanshawe B, Qi Y, et al. Prader-willi critical region, a non-translated, imprinted central regulator of bone mass: possible role in skeletal abnormalities in Prader-Willi syndrome. PLoS One. 2016;11(1):e0148155.

88

Qi Y, Purtell L, Fu M, et al. Snord116 is critical in the regulation of food intake and body weight. Sci Rep. 2016;6:18614.

89

Qi Y, Purtell L, Fu M, et al. Ambient temperature modulates the effects of the Prader-Willi syndrome candidate gene Snord116 on energy homeostasis. Neuropeptides. 2017;61:87-93.

90

Qi Y, Purtell L, Fu M, et al. Hypothalamus specific re-introduction of SNORD116 into otherwise Snord116 deficient mice increased energy expenditure. J Neuroendocrinol. 2017;29(10):e12457.

91

Zhang Q, Bouma GJ, McClellan K, et al. Hypothalamic expression of snoRNA Snord116 is consistent with a link to the hyperphagia and obesity symptoms of Prader-Willi syndrome. Int J Dev Neurosci. 2012;30(6):479-485.

92

Rodriguez JA, Bruggeman EC, Mani BK, et al. Ghrelin receptor agonist rescues excess neonatal mortality in a Prader-Willi syndrome mouse model. Endocrinology. 2018;159(12):4006-4022.

93

Zieba J, Low JK, Purtell L, et al. Behavioural characteristics of the Prader-Willi syndrome related biallelic Snord116 mouse model. Neuropeptides. 2015;53:71-77.

94

Adhikari A, Copping NA, Onaga B, et al. Cognitive deficits in the Snord116 deletion mouse model for Prader-Willi syndrome. Neurobiol Learn Mem. 2019;165:106874.

95

Burnett LC, Hubner G, LeDuc CA, et al. Loss of the imprinted, non-coding Snord116 gene cluster in the interval deleted in the Prader Willi syndrome results in murine neuronal and endocrine pancreatic developmental phenotypes. Hum Mol Genet. 2017;26(23):4606-4616.

96

Lassi G, Priano L, Maggi S, et al. Deletion of the Snord116/SNORD116 alters sleep in mice and patients with Prader-Willi syndrome. Sleep. 2016;39(3):637-644.

97

Pace M, Colombi I, Falappa M, et al. Loss of Snord116 alters cortical neuronal activity in mice: a preclinical investigation of Prader-Willi syndrome. Hum Mol Genet. 2020;29(12):2051-2064.

98

Rozhdestvensky TS, Robeck T, Galiveti CR, et al. Maternal transcription of non-protein coding RNAs from the PWS-critical region rescues growth retardation in mice. Sci Rep. 2016;6:20398.

99

Coulson RL, Powell WT, Yasui DH, et al. Prader-Willi locus Snord116 RNA processing requires an active endogenous allele and neuron-specific splicing by Rbfox3/NeuN. Hum Mol Genet. 2018;27(23):4051-4060.

100

Kishore S, Stamm S. The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C. Science. 2006;311(5758):230-232.

101

Kishore S, Khanna A, Zhang Z, et al. The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. Hum Mol Genet. 2010;19(7):1153-1164.

102

Bortolin-Cavaillé ML, Cavaillé J. The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader-Willi locus generate canonical box C/D snoRNAs. Nucleic Acids Res. 2012;40(14):6800-6807.

103

Cruvinel E, Budinetz T, Germain N, et al. Reactivation of maternal SNORD116 cluster via SETDB1 knockdown in Prader-Willi syndrome iPSCs. Hum Mol Genet. 2014;23(17):4674-4685.

104

Langouët M, Gorka D, Orniacki C, et al. Specific ZNF274 binding interference at SNORD116 activates the maternal transcripts in Prader-Willi syndrome neurons. Hum Mol Genet. 2020;29(19):3285-3295.

105

Langouët M, Glatt-Deeley HR, Chung MS, et al. Zinc finger protein 274 regulates imprinted expression of transcripts in Prader-Willi syndrome neurons. Hum Mol Genet. 2018;27(3):505-515.

106

Falaleeva M, Surface J, Shen M, et al. SNORD116 and SNORD115 change expression of multiple genes and modify each other’s activity. Gene. 2015;572(2):266-273.

107

Labrune P, Lacroix C, Goutières F, et al. Extensive brain calcifications, leukodystrophy, and formation of parenchymal cysts: a new progressive disorder due to diffuse cerebral microangiopathy. Neurology. 1996;46(5):1297-1301.

108

Jenkinson EM, Rodero MP, Kasher PR, et al. Mutations in SNORD118 cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts. Nat Genet. 2016;48(10):1185-1192.

109

Shtaya A, Elmslie F, Crow Y, et al. Leukoencephalopathy, intracranial calcifications, cysts, and SNORD118 mutation (labrune syndrome) with obstructive Hydrocephalus. World Neurosurg. 2019;125:271-272.

110

Crow YJ, Marshall H, Rice GI, et al. Leukoencephalopathy with calcifications and cysts: genetic and phenotypic spectrum. Am J Med Genet A. 2021;185(1):15-25.

111

Saygin C, Carraway HE. Current and emerging strategies for management of myelodysplastic syndromes. Blood Rev. 2021;48:100791.

112

Chlon TM, Stepanchick E, Hershberger CE, et al. Germline DDX41 mutations cause ineffective hematopoiesis and myelodysplasia. Cell Stem Cell. 2021;28(11):1966-1981. e6.

113

Sébert M, Passet M, Raimbault A, et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood. 2019;134(17):1441-1444.

114

Tsukamoto T, Gearhart MD, Kim S, et al. Insights into the involvement of spliceosomal mutations in myelodysplastic disorders from analysis of SACY-1/DDX41 in Caenorhabditis elegans. Genetics. 2020;214(4):869-893.

115

Lewinsohn M, Brown AL, Weinel LM, et al. Novel germ line DDX41 mutations define families with a lower age of MDS/AML onset and lymphoid malignancies. Blood. 2016;127(8):1017-1023.

116

Cheah JJC, Hahn CN, Hiwase DK, et al. Myeloid neoplasms with germline DDX41 mutation. Int J Hematol. 2017;106(2):163-174.

117

Lai NS, Yu HC, Huang KY, et al. Decreased T cell expression of H/ACA box small nucleolar RNA 12 promotes lupus pathogenesis in patients with systemic lupus erythematosus. Lupus. 2018;27(9):1499-1508.

118

Lafaille FG, Harschnitz O, Lee YS, et al. Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie Herpes simplex encephalitis. Nat Med. 2019;25(12):1873-1884.

119

Steinbusch MM, Fang Y, Milner PI, et al. Serum snoRNAs as biomarkers for joint ageing and post traumatic osteoarthritis. Sci Rep. 2017;7:43558.

120

Peffers MJ, Chabronova A, Balaskas P, et al. SnoRNA signatures in cartilage ageing and osteoarthritis. Sci Rep. 2020;10:10641.

121

Ripmeester EGJ, Caron MMJ, van den Akker GGH, et al. Impaired chondrocyte U3 snoRNA expression in osteoarthritis impacts the chondrocyte protein translation apparatus. Sci Rep. 2020;10:13426.

122

Parray A, Mir FA, Doudin A, et al. SnoRNAs and miRNAs networks underlying COVID-19 disease severity. Vaccines. 2021;9(10):1056.

123

Ma D, Zhou X, Wang Y, et al. Changes in the small noncoding RNAome during M1 and M2 macrophage polarization. Front Immunol. 2022;13:799733.

124

Sletten AC, Davidson JW, Yagabasan B, et al. Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis. Nat Commun. 2021;12:5214.

125

Grigsby IF, Pham L, Gopalakrishnan R, et al. Downregulation of Gnas, Got2 and Snord32a following tenofovir exposure of primary osteoclasts. Biochem Biophys Res Commun. 2010;391(3):1324-1329.

126

Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25(3):585-621.

127

Frisch SM, MacFawn IP. Type Ⅰ interferons and related pathways in cell senescence. Aging Cell. 2020;19(10):e13234.

128

Baudier RL, Zwezdaryk KJ, Czarny-Ratajczak M, et al. Unique transcriptome changes in peripheral B cells revealed by comparing age groups from naive or vaccinated mice, including snoRNA and Cdkn2a. J Gerontol A Biol Sci Med Sci. 2020;75(12):2326-2332.

129

Xiao F, Peng J, Li Y, et al. Small noncoding RNAome changes during human bone marrow mesenchymal stem cells senescence in vitro. Front Endocrinol. 2022;13:808223.

130

Soulé S, Mellottée L, Arab A, et al. Jouvence a small nucleolar RNA required in the gut extends lifespan in Drosophila. Nat Commun. 2020;11(1):987.

131

El-Khoury F, Bignon J, Martin JR. Jouvence, a new human snoRNA involved in the control of cell proliferation. BMC Genom. 2020;21:817.

132

Ding Y, Sun Z, Zhang S, et al. Downregulation of snoRNA SNORA52 and its clinical significance in hepatocellular carcinoma. BioMed Res Int. 2021;2021:7020637.

Genes & Diseases
Pages 2064-2081
Cite this article:
Zhang X, Wang C, Xia S, et al. The emerging role of snoRNAs in human disease. Genes & Diseases, 2023, 10(5): 2064-2081. https://doi.org/10.1016/j.gendis.2022.11.018

237

Views

2

Downloads

12

Crossref

12

Web of Science

12

Scopus

0

CSCD

Altmetrics

Received: 28 May 2022
Revised: 01 November 2022
Accepted: 16 November 2022
Published: 26 December 2022
© 2022 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return