AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance

Cell Biology Department, ICMR-National Institute of Nutrition (NIN), Hyderabad, Telangana 500007, India

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

Chemotherapy is an effortless and frequently used approach in cancer therapy. However, in most cases, it can only prolong life expectancy and does not guarantee a complete cure. Furthermore, chemotherapy is associated with severe adverse effects, one of the major complications of effective cancer therapy. In addition, newly published research outputs show that cancer stem cells are involved in cancer disease progression, drug resistance, metastasis, and recurrence and that they are functional in the trans-differentiation capacity of cancer stem cells to cancer cells in response to treatments. Novel strategies are therefore required for better management of cancer therapy. The prime approach would be to synthesize and develop novel drugs that need extensive resources, time, and endurance to be brought into therapeutic use. The subsequent approach would be to screen the anti-cancer activity of available non-cancerous drugs. This concept of repurposing non-cancer drugs as an alternative to current cancer therapy has become popular in recent years because using existing anticancer drugs has several adverse effects. Micronutrients have also been investigated for cancer therapy due to their significant anti-cancer effects with negligible or no side effects and availability in food sources. In this paper, we discuss an ideal hypothesis for screening available non-cancerous drugs with anticancer activity, with a focus on cancer stem cells and their clinical application for cancer treatment. Further, drug repurposing and the combination of micronutrients that can target both cancers and cancer stem cells may result in a better therapeutic approach leading to maximum tumor growth control.

References

1

Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71(3):209-249.

2

Salem MSZ. Cancer: some genetic considerations. Egypt J Med Hum Genet. 2015;16(1):1-10.

3

Espina C, Straif K, Friis S, et al. European Code against Cancer 4th Edition: environment, occupation and cancer. Cancer Epidemiol. 2015;39:S84-S92.

4

Ruiz-Núñez B, Pruimboom L, Dijck-Brouwer DAJ, et al. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J Nutr Biochem. 2013;24(7):1183-1201.

5

Donaldson MS. Nutrition and cancer: a review of the evidence for an anti-cancer diet. Nutr J. 2004;3:19.

6

Wang Z, McLoone P, Morrison DS. Diet, exercise, obesity, smoking and alcohol consumption in cancer survivors and the general population: a comparative study of 16282 individuals. Br J Cancer. 2015;112(3):572-575.

7
Debela DT, Muzazu SG, Heraro KD, et al. New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med; 2021;9:20503121211034366.
8

Barker HE, Paget JTE, Khan AA, et al. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer. 2015;15(7):409-425.

9

Arruebo M, Vilaboa N, Sáez-Gutierrez B, et al. Assessment of the evolution of cancer treatment therapies. Cancers. 2011;3(3):3279-3330.

10

Nurgali K, Jagoe RT, Abalo R. Editorial: adverse effects of cancer chemotherapy: anything new to improve tolerance and reduce sequelae? Front Pharmacol. 2018;9:245.

11
Amjad MT, Chidharla A, Kasi A. Cancer chemotherapy. In: StatPearls [Internet]. Treasure Island (FL). StatPearls Publishing; 2022.
12

Gao Q, Zhou G, Lin SJ, et al. How chemotherapy and radiotherapy damage the tissue: comparative biology lessons from feather and hair models. Exp Dermatol. 2019;28(4):413-418.

13

Tohme S, Simmons RL, Tsung A. Surgery for cancer: a trigger for metastases. Cancer Res. 2017;77(7):1548-1552.

14

Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9(3):193-199.

15

Wan GY, Liu Y, Chen BW, et al. Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol Med. 2016;13(3):325-338.

16

Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA A Cancer J Clin. 2011;61(4):250-281.

17

Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience. 2019;13:961.

18

Varghese S, Rabkin SD. Oncolytic Herpes simplex virus vectors for cancer virotherapy. Cancer Gene Ther. 2002;9(12):967-978.

19

Bradley AM, Devine M, DeRemer D. Brentuximab vedotin: an anti-CD30 antibody-drug conjugate. Am J Health Syst Pharm. 2013;70(7):589-597.

20

Yeldag G, Rice A, Del Río Hernández A. Chemoresistance and the self-maintaining tumor microenvironment. Cancers. 2018;10(12):471.

21

Phi LTH, Sari IN, Yang YG, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018;2018:5416923.

22

Du FY, Zhou QF, Sun WJ, et al. Targeting cancer stem cells in drug discovery: current state and future perspectives. World J Stem Cell. 2019;11(7):398-420.

23

Akhondzadeh S. The importance of clinical trials in drug development. Avicenna J Med Biotechnol (AJMB). 2016;8(4):151.

24

Sauer S, Reed DR, Ihnat M, et al. Innovative approaches in the battle against cancer recurrence: novel strategies to combat dormant disseminated tumor cells. Front Oncol. 2021;11:659963.

25

Mitra A, Mishra L, Li S. EMT, CTCs and CSCs in tumor relapse and drug-resistance. Oncotarget. 2015;6(13):10697-10711.

26

Yu Z, Pestell TG, Lisanti MP, et al. Cancer stem cells. Int J Biochem Cell Biol. 2012;44(12):2144-2151.

27

Agliano A, Calvo A, Box C. The challenge of targeting cancer stem cells to halt metastasis. Semin Cancer Biol. 2017;44:25-42.

28

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.

29

Sack U, Tarnok A, Preijers F, et al. Editorial: modulation of human immune parameters by anticancer therapies. Front Immunol. 2020;11:621556.

30

Lee EYHP, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring Harbor Perspect Biol. 2010;2(10):a003236.

31

Rivlin N, Brosh R, Oren M, et al. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer. 2011;2(4):466-474.

32

Sell S. Cellular origin of cancer: dedifferentiation or stem cell maturation arrest? Environ Health Perspect. 1993;101(Suppl 5):15-26.

33

Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25:20.

34

Walcher L, Kistenmacher AK, Suo H, et al. Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol. 2020;11:1280.

35

Kim YS, Kaidina AM, Chiang J-H, et al. Cancer stem cell molecular markers verified in vivo. Biochem Moscow Suppl Ser B. 2017;11(1):43-54.

36

Bao B, Ahmad A, Azmi AS, et al. Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol. 2013;14 (14.25):1-18.

37

Mohan A, Raj RR, Mohan G, et al. Reporters of cancer stem cells as a tool for drug discovery. Front Oncol. 2021;11:669250.

38

Gilbert CA, Ross AH. Cancer stem cells: cell culture, markers, and targets for new therapies. J Cell Biochem. 2009;108(5):1031-1038.

39

Yamashita T, Wang XW. Cancer stem cells in the development of liver cancer. J Clin Invest. 2013;123(5):1911-1918.

40

Collins AT, Maitland NJ. Prostate cancer stem cells. Eur J Cancer. 2006;42(9):1213-1218.

41

Huang P, Watanabe M, Kaku H, et al. Cancer stem cell-like characteristics of a CD133+ subpopulation in the J82 human bladder cancer cell line. Mol Clin Oncol. 2013;1(1):180-184.

42

Hosen N, Park CY, Tatsumi N, et al. CD96 is a leukemic stem cell-specific marker in human acute myeloid leukemia. Proc Natl Acad Sci U S A. 2007;104(26):11008-11013.

43

Jin L, Lee EM, Ramshaw HS, et al. Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell. 2009;5(1):31-42.

44

Schatton T, Murphy GF, Frank NY, et al. Identification of cells initiating human melanomas. Nature. 2008;451(7176):345-349.

45

Zimmerer RM, Korn P, Demougin P, et al. Functional features of cancer stem cells in melanoma cell lines. Cancer Cell Int. 2013;13:78.

46

Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci U S A. 2006;103(30):11154-11159.

47

Silva IA, Bai S, McLean K, et al. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 2011;71(11):3991-4001.

48

Liu S, Wicha MS. Targeting breast cancer stem cells. J Clin Oncol. 2010;28(25):4006-4012.

49

Todaro M, Francipane MG, Medema JP, et al. Colon cancer stem cells: promise of targeted therapy. Gastroenterology. 2010;138(6):2151-2162.

50

Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cell. 2009;27(5):1006-1020.

51

Jiang Y, He Y, Li H, et al. Expressions of putative cancer stem cell markers ABCB1, ABCG2, and CD133 are correlated with the degree of differentiation of gastric cancer. Gastric Cancer. 2012;15(4):440-450.

52

Krishnamurthy S, Nör JE. Head and neck cancer stem cells. J Dent Res. 2012;91(4):334-340.

53

Gómez-López S, Lerner RG, Petritsch C. Asymmetric cell division of stem and progenitor cells during homeostasis and cancer. Cell Mol Life Sci. 2014;71(4):575-597.

54

Huang Z, Wu T, Liu AY, et al. Differentiation and transdifferentiation potentials of cancer stem cells. Oncotarget. 2015;6(37):39550-39563.

55

Takebe N, Miele L, Harris PJ, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12(8):445-464.

56

Torgovnick A, Schumacher B. DNA repair mechanisms in cancer development and therapy. Front Genet. 2015;6:157.

57

Chang JC. Cancer stem cells: role in tumor growth, recurrence, metastasis, and treatment resistance. Medicine. 2016;95(1 Suppl 1):S20-S25.

58

Shiozawa Y, Nie B, Pienta KJ, et al. Cancer stem cells and their role in metastasis. Pharmacol Ther. 2013;138(2):285-293.

59

Duchartre Y, Kim YM, Kahn M. The Wnt signaling pathway in cancer. Crit Rev Oncol Hematol. 2016;99:141-149.

60

Sethi JK, Vidal-Puig A. Wnt signalling and the control of cellular metabolism. Biochem J. 2010;427(1):1-17.

61

Patel S, Alam A, Pant R, et al. Wnt signaling and its significance within the tumor microenvironment: novel therapeutic insights. Front Immunol. 2019;10:2872.

62

Yang K, Wang X, Zhang H, et al. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: implications in targeted cancer therapies. Lab Invest. 2016;96(2):116-136.

63

MacDonald BT, He X. Frizzled and LRP5/6 receptors for Wnt/β-catenin signaling. Cold Spring Harbor Perspect Biol. 2012;4(12):a007880.

64

Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res. 2007;13(14):4042-4045.

65

Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review). Int J Oncol. 2017;51(5):1357-1369.

66

Qiao L, Wong BCY. Role of Notch signaling in colorectal cancer. Carcinogenesis. 2009;30(12):1979-1986.

67

Chiba S. Concise review: Notch signaling in stem cell systems. Stem Cell. 2006;24(11):2437-2447.

68

Lobry C, Oh P, Mansour MR, et al. Notch signaling: switching an oncogene to a tumor suppressor. Blood. 2014;123(16):2451-2459.

69

Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles. Genes Dev. 2001;15(23):3059-3087.

70

Armas-López L, Zúñiga J, Arrieta O, et al. The Hedgehog-GLI pathway in embryonic development and cancer: implications for pulmonary oncology therapy. Oncotarget. 2017;8(36):60684-60703.

71

Huminiecki L, Goldovsky L, Freilich S, et al. Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom. BMC Evol Biol. 2009;9:28.

72

Zi Z. Molecular engineering of the TGF-β signaling pathway. J Mol Biol. 2019;431(15):2644-2654.

73

Huang F, Chen YG. Regulation of TGF-β receptor activity. Cell Biosci. 2012;2:9.

74

Tang LY, Heller M, Meng Z, et al. Transforming growth factor-β (TGF-β) directly activates the JAK1-STAT3 axis to induce hepatic fibrosis in coordination with the SMAD pathway. J Biol Chem. 2017;292(10):4302-4312.

75

Ali I, Lone MN, Aboul-Enein HY. Imidazoles as potential anticancer agents. Med Chem Commun. 2017;8(9):1742-1773.

76

Michael M, Doherty MM. Tumoral drug metabolism: overview and its implications for cancer therapy. J Clin Oncol. 2005;23:205-229.

77

Shen H, He MM, Liu H, et al. Comparative metabolic capabilities and inhibitory profiles of CYP2D6.1, CYP2D6.10, and CYP2D6.17. Drug Metab Dispos. 2007;35(8):1292-1300.

78

Rivlin N, Brosh R, Oren M, et al. Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer. 2011;2(4):466-474.

79

Aas T, Børresen AL, Geisler S, et al. Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med. 1996;2(7):811-814.

80

Soengas MS, Alarcón RM, Yoshida H, et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science. 1999;284(5411):156-159.

81

Cheung-Ong K, Giaever G, Nislow C. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol. 2013;20(5):648-659.

82

Zhou J, Kang Y, Chen L, et al. The drug-resistance mechanisms of five platinum-based antitumor agents. Front Pharmacol. 2020;11:343.

83

Cheung CHA, Wu SY, Lee TR, et al. Cancer cells acquire mitotic drug resistance properties through beta I-tubulin mutations and alterations in the expression of beta-tubulin isotypes. PLoS One. 2010;5(9):e12564.

84
Mehta K, Fok JY. Drug Resistance in Cancer Cells. In: Targeting transglutaminase-2 to overcome chemoresistance in cancer cells. New York, NY: Springer US; 2009:95-114.
85

Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783-792.

86

Holohan C, Van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714-726.

87

Koivisto P, Kononen J, Palmberg C, et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 1997;57(2):314-319.

88

Chang G, Roth CB. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science. 2001;293(5536):1793-1800.

89

An Y, Ongkeko WM. ABCG2:the key to chemoresistance in cancer stem cells? Expet Opin Drug Metabol Toxicol. 2009;5(12):1529-1542.

90

Nakanishi T, Ross DD. Breast cancer resistance protein (BCRP/ABCG2):its role in multidrug resistance and regulation of its gene expression. Chin J Cancer. 2012;31(2):73-99.

91

Jaramillo AC, Al Saig F, Cloos J, et al. How to overcome ATP-binding cassette drug efflux transporter-mediated drug resistance? Cancer Drug Resist. 2018;1:6-29.

92

Li LY, Guan YD, Chen XS, et al. DNA repair pathways in cancer therapy and resistance. Front Pharmacol. 2021;11:629266.

93

Huang D, Duan H, Huang H, et al. Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition. Sci Rep. 2016;6:20502.

94

Thorburn A. Apoptosis and autophagy: regulatory connections between two supposedly different processes. Apoptosis. 2008;13(1):1-9.

95

Thomberry NA, Laxebnik Y. Caspases: enemies within. Science. 1998;281(5381):1312-1316.

96

Slee EA, Adrain C, Martin SJ. Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ. 1999;6(11):1067-1074.

97

Sevrioukova IF. Apoptosis-inducing factor: structure, function, and redox regulation. Antioxidants Redox Signal. 2011;14(12):2545-2579.

98

Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res. 2014;2(9):823-830.

99

Su M, Mei Y, Sinha S. Role of the crosstalk between autophagy and apoptosis in cancer. JAMA Oncol. 2013;2013:102735.

100

Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer. 2011;2(6):607-617.

101

Witcher M, Emerson BM. Epigenetic silencing of the p16INK4a tumor suppressor is associated with loss of CTCF binding and a chromatin boundary. Mol Cell. 2009;34(3):271-284.

102

Kondo Y, Shen LL, Issa JPJ. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol. 2003;23(1):206-215.

103

Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009;1(2):239-259.

104

Dratwa M, Wysoczańska B, Łacina P, et al. TERT-regulation and roles in cancer formation. Front Immunol. 2020;11:589929.

105

Mariño-Ramírez L, Kann MG, Shoemaker BA, et al. Histone structure and nucleosome stability. Expert Rev Proteomics. 2005;2(5):719-729.

106

Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harbor Perspect Biol. 2016;8(4):a019521.

107

Gangaraju VK, Lin H. MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol. 2009;10(2):116-125.

108

Lujambio A, Ropero S, Ballestar E, et al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Res. 2007;67(4):1424-1429.

109

Bandres E, Agirre X, Bitarte N, et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer. 2009;125(11):2737-2743.

110

Marzagalli M, Fontana F, Raimondi M, et al. Cancer stem cells-key players in tumor relapse. Cancers. 2021;13(3):376.

111

Qin S, Jiang J, Lu Y, et al. Emerging role of tumor cell plasticity in modifying therapeutic response. Signal Transduct Targeted Ther. 2020;5:228.

112

Quante M, Tu SP, Tomita H, et al. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell. 2011;19(2):257-272.

113

Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014;9:47-71.

114

Semenza GL. The hypoxic tumor microenvironment: a driving force for breast cancer progression. Biochim Biophys Acta. 2016;1863(3):382-391.

115

Singh S, Brocker C, Koppaka V, et al. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med. 2013;56:89-101.

116

Scheel C, Weinberg RA. Phenotypic plasticity and epithelial-mesenchymal transitions in cancer and normal stem cells? Int J Cancer. 2011;129(10):2310-2314.

117

Kim DH, Xing T, Yang Z, et al. Epithelial mesenchymal transition in embryonic development, tissue repair and cancer: a comprehensive overview. J Clin Med. 2018;7(1):1.

118

Wang H, Chirshev E, Hojo N, et al. The epithelial-mesenchymal transcription factor SNAI1 represses transcription of the tumor suppressor miRNA let-7 in cancer. Cancers. 2021;13(6):1469.

119

Sipos F, Galamb O. Epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions in the colon. World J Gastroenterol. 2012;18(7):601-608.

120

Cruz da Silva E, Dontenwill M, Choulier L, et al. Role of integrins in resistance to therapies targeting growth factor receptors in cancer. Cancers. 2019;11(5):692.

121

Bates RC, Mercurio AM. The epithelial-mesenchymal transition (EMT) and colorectal cancer progression. Cancer Biol Ther. 2005;4(4):365-370.

122

Galliher AJ, Schiemann WP. Beta3 integrin and Src facilitate transforming growth factor-beta mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Res. 2006;8(4):R42.

123

Shibue T, Weinberg RA. Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A. 2009;106(25):10290-10295.

124

Vadodkar AS, Suman S, Lakshmanaswamy R, et al. Chemoprevention of breast cancer by dietary compounds. Anti Cancer Agents Med Chem. 2012;12(10):1185-1202.

125

Sahebjam S, Siu LL, Razak AA. The utility of hedgehog signaling pathway inhibition for cancer. Oncol. 2012;17(8):1090-1099.

126

Abidi A. Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian J Pharmacol. 2014;46(1):3-12.

127

Yan Y, Zuo X, Wei D. Concise review: emerging role of CD44 in cancer stem cells: a promising biomarker and therapeutic target. Stem Cells Transl Med. 2015;4(9):1033-1043.

128

Garofalo M, Croce CM. Role of microRNAs in maintaining cancer stem cells. Adv Drug Deliv Rev. 2015;81:53-61.

129

Dao FT, Yang L, Wang YZ, et al. Characteristic and prognostic significance of leukemia stem cells associated antigens expressions in t (8;21) acute myeloid leukemia. Zhonghua Xue Ye Xue Za Zhi. 2019;40(10):831-836.

130

Luo L, Zeng J, Liang B, et al. Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp Mol Pathol. 2011;91(2):596-602.

131

Zhao L, Yang Y, Zhou P, et al. Targeting CD133high colorectal cancer cells in vitro and in vivo with an asymmetric bispecific antibody. J Immunother. 2015;38(6):217-228.

132

Long H, Xiang T, Qi W, et al. CD133+ ovarian cancer stem-like cells promote non-stem cancer cell metastasis via CCL5 induced epithelial-mesenchymal transition. Oncotarget. 2015;6(8):5846-5859.

133

Ding PR, Tiwari AK, Ohnuma S, et al. The phosphodiesterase-5 inhibitor vardenafil is a potent inhibitor of ABCB1/P-glycoprotein transporter. PLoS One. 2011;6(4):e19329.

134

Navarro G, Sawant RR, Biswas S, et al. P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells. Nanomedicine (Lond). 2012;7(1):65-78.

135

Lans TE, Grünhagen DJ, de Wilt JHW, et al. Isolated limb perfusions with tumor necrosis factor and melphalan for locally recurrent soft tissue sarcoma in previously irradiated limbs. Ann Surg Oncol. 2005;12(5):406-411.

136

Higgins JP, Bernstein MB, Hodge JW. Enhancing immune responses to tumor-associated antigens. Cancer Biol Ther. 2009;8(15):1440-1449.

137

Guo Y, Feng K, Wang Y, et al. Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment. Protein Cell. 2018;9(6):516-526.

138

Wang K, Wei G, Liu D. CD19:a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol. 2012;1:36.

139

Engelhard M. Anti-CD20 antibody treatment of non-Hodgkin lymphomas. Clin Immunol. 2016;172:101-104.

140

Stein H, Foss HD, Dürkop H, et al. CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood. 2000;96(12):3681-3695.

141

Walter RB, Appelbaum FR, Estey EH, et al. Acute myeloid leukemia stem cells and CD33-targeted immunotherapy. Blood. 2012;119(26):6198-6208.

142

Vojdeman FJ, Herman SEM, Kirkby N, et al. Soluble CD52 is an indicator of disease activity in chronic lymphocytic leukemia. Leuk Lymphoma. 2017;58(10):2356-2362.

143

Agostinetto E, Montemurro F, Puglisi F, et al. Immunotherapy for HER2-positive breast cancer: clinical evidence and future perspectives. Cancers. 2022;14(9):2136.

144

To KKW, Fong W, Cho WCS. Immunotherapy in treating EGFR-mutant lung cancer: current challenges and new strategies. Front Oncol. 2021;11:635007.

145

Hansen TF, Qvortrup C, Pfeiffer P. Angiogenesis inhibitors for colorectal cancer. a review of the clinical data. Cancers. 2021;13(5):1031.

146
Kankanala V.L., Mukkamalla S.K.R.Carcinoembryonic Antigen. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022.
147

Liao MY, Lai JK, Kuo MYP, et al. An anti-EpCAM antibody EpAb2-6 for the treatment of colon cancer. Oncotarget. 2015;6(28):24947-24968.

148

Wang J, Hu W, Wang K, et al. Repertaxin, an inhibitor of the chemokine receptors CXCR1 and CXCR2, inhibits malignant behavior of human gastric cancer MKN45 cells in vitro and in vivo and enhances efficacy of 5-fluorouracil. Int J Oncol. 2016;48(4):1341-1352.

149

Ginestier C, Charafe-Jauffret E, Birnbaum D. Targeting breast cancer stem cells: fishing season open!. Breast Cancer Res. 2010;12(5):312.

150

Burroughs SK, Kaluz S, Wang D, et al. Hypoxia inducible factor pathway inhibitors as anticancer therapeutics. Future Med Chem. 2013;5(5):553-572.

151

Horn L, Sandler AB. Emerging data with antiangiogenic therapies in early and advanced non-small-cell lung cancer. Clin Lung Cancer. 2009;10(Suppl 1):S7-S16.

152

Senapati S, Mahanta AK, Kumar S, et al. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3:7.

153

Zhou Y, Yang J, Kopeček J. Selective inhibitory effect of HPMA copolymer-cyclopamine conjugate on prostate cancer stem cells. Biomaterials. 2012;33(6):1863-1872.

154

Wei X, Senanayake TH, Warren G, et al. Hyaluronic acid-based nanogel-drug conjugates with enhanced anticancer activity designed for the targeting of CD44-positive and drug-resistant tumors. Bioconjugate Chem. 2013;24(4):658-668.

155

Tang Y, Chen Y, Zhang Z, et al. Nanoparticle-based RNAi therapeutics targeting cancer stem cells: update and prospective. Pharmaceutics. 2021;13(12):2116.

156

Correia AS, Gärtner F, Vale N. Drug combination and repurposing for cancer therapy: the example of breast cancer. Heliyon. 2021;7(1):e05948.

157

Bayat Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022-38043.

158

Huang J, Tao C, Yu Y, et al. Simultaneous targeting of differentiated breast cancer cells and breast cancer stem cells by combination of docetaxel- and sulforaphane-loaded self-assembled poly(D, L-lactide-co-glycolide)/hyaluronic acid block copolymer-based nanoparticles. J Biomed Nanotechnol. 2016;12(7):1463-1477.

159

Feinberg B, Kish J, Dokubo I, et al. Reports of the demise of chemotherapy have been greatly exaggerated. Am J Manag Care. 2019;25(6):270-272.

160

Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: the pharmaceutical industry's grand challenge. Nat Rev Drug Discov. 2010;9(3):203-214.

161

Hoelder S, Clarke PA, Workman P. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol. 2012;6(2):155-176.

162

Siddiqui M, Rajkumar SV. The high cost of cancer drugs and what we can do about it. Mayo Clin Proc. 2012;87(10):935-943.

163

DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003;22(2):151-185.

164

Cha Y, Erez T, Reynolds IJ, et al. Drug repurposing from the perspective of pharmaceutical companies. Br J Pharmacol. 2018;175(2):168-180.

165

Aggarwal S, Verma SS, Aggarwal S, et al. Drug repurposing for breast cancer therapy: old weapon for new battle. Semin Cancer Biol. 2021;68:8-20.

166

Umscheid CA, Margolis DJ, Grossman CE. Key concepts of clinical trials: a narrative review. Postgrad Med. 2011;123(5):194-204.

167

Omejc M. Drug development: the journey of a medicine from lab to shelf. J Dev Drugs. 2020;9(1):e115.

168

Akhtar A. The flaws and human harms of animal experimentation. Camb Q Healthc Ethics. 2015;24(4):407-419.

169

Chilet-Rosell E. Gender bias in clinical research, pharmaceutical marketing, and the prescription of drugs. Glob Health Action. 2014;7:25484.

170

Undas A, Brummel-Ziedins KE, Mann KG. Antithrombotic properties of aspirin and resistance to aspirin: beyond strictly antiplatelet actions. Blood. 2007;109(6):2285-2292.

171

Liu XH, Kirschenbaum A, Yao S, et al. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J Urol. 2000;164(3):820-825.

172

Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19:results of an open label non-randomized clinical trial. Int J Antimicrob Agents. 2020;56(1):105949.

173

Hughes JR, Stead LF, Hartmann-Boyce J, et al. Antidepressants for smoking cessation. Cochrane Database Syst Rev. 2014;2014(1):CD000031.

174

Acharya Y, Sayed A. Chloroquine and hydroxychloroquine as a repurposed agent against COVID-19: a narrative review. Ther Adv Infect Dis. 2020;7:2049936120947517.

175

Plaze M, Attali D, Petit AC, et al. Repurposing chlorpromazine to treat COVID-19: the recovery study. L’Encéphale. 2020;46(3):169-172.

176

Chiu L, Lo CH, Shen M, et al. Colchicine use in patients with COVID-19: a systematic review and meta-analysis. PLoS One. 2021;16(12):e0261358.

177

Schein CH. Repurposing approved drugs for cancer therapy. Br Med Bull. 2021;137(1):13-27.

178

Thomas SD, Jha NK, Sadek B, et al. Repurposing dimethyl fumarate for cardiovascular diseases: pharmacological effects, molecular mechanisms, and therapeutic promise. Pharmaceuticals (Basel). 2022;15(5):497.

179

Steiner M, Steinberg S, Stewart D, et al. Fluoxetine in the treatment of premenstrual Dysphoria. Canadian fluoxetine/premenstrual Dysphoria collaborative study group. N Engl J Med. 1995;332(23):1529-1534.

180

Suchonwanit P, Thammarucha S, Leerunyakul K. Minoxidil and its use in hair disorders: a review. Drug Des Dev Ther. 2019;13:2777-2786.

181

Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 - final report. N Engl J Med. 2020;383(19):1813-1826.

182
Rudrapal M, Khairnar SJ, Jadhav AG. Drug repurposing (DR): an emerging approach in drug discovery. In: Badria FA, ed. Drug Repurposing - Hypothesis, Molecular Aspects and Therapeutic Applications [Internet]. London: IntechOpen; 2020.
183

Burock S, Daum S, Keilholz U, et al. Phase Ⅱ trial to investigate the safety and efficacy of orally applied niclosamide in patients with metachronous or sychronous metastases of a colorectal cancer progressing after therapy: the NIKOLO trial. BMC Cancer. 2018;18(1):297.

184

Yeh CT, Wu ATH, Chang PMH, et al. Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am J Respir Crit Care Med. 2012;186(11):1180-1188.

185

Heng WS, Cheah SC. Chelerythrine chloride downregulates β-catenin and inhibits stem cell properties of non-small cell lung carcinoma. Molecules. 2020;25(1):224.

186

Gupta PB, Onder TT, Jiang G, et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645-659.

187

Shaimerdenova M, Karapina O, Mektepbayeva D, et al. The effects of antiviral treatment on breast cancer cell line. Infect Agent Cancer. 2017;12:18.

188

Lim YC, Kang HJ, Kim YS, et al. All-trans-retinoic acid inhibits growth of head and neck cancer stem cells by suppression of Wnt/β-catenin pathway. Eur J Cancer. 2012;48(17):3310-3318.

189

Kim MS, Yoo BC, Yang WS, et al. Src is the primary target of aripiprazole, an atypical antipsychotic drug, in its anti-tumor action. Oncotarget. 2017;9(5):5979-5992.

190

Augustin Y, Staines HM, Krishna S. Artemisinins as a novel anti-cancer therapy: targeting a global cancer pandemic through drug repurposing. Pharmacol Ther. 2020;216:107706.

191

Qorri B, Harless W, Szewczuk MR. Novel molecular mechanism of aspirin and celecoxib targeting mammalian neuraminidase-1 impedes epidermal growth factor receptor signaling axis and induces apoptosis in pancreatic cancer cells. Drug Des Dev Ther. 2020;14:4149-4167.

192

Jin M, Li C, Zhang Q, et al. Effects of aspirin on proliferation, invasion and apoptosis of Hep-2 cells via the PTEN/AKT/NF-κB/survivin signaling pathway. Oncol Lett. 2018;15(6):8454-8460.

193

Suzuki S, Yamamoto M, Togashi K, et al. In vitro and in vivo anti-tumor effects of brexpiprazole, a newly-developed serotonin-dopamine activity modulator with an improved safety profile. Oncotarget. 2019;10(37):3547-3558.

194

Zeng S, Pöttler M, Lan B, et al. Chemoresistance in pancreatic cancer. Int J Mol Sci. 2019;20(18):4504.

195

Pantziarka P, Bouche G, Meheus L, et al. Repurposing drugs in oncology (ReDO)-cimetidine as an anti-cancer agent. Ecancermedicalscience. 2014;8:485.

196

Pfab C, Schnobrich L, Eldnasoury S, et al. Repurposing of antimicrobial agents for cancer therapy: what do we know? Cancers. 2021;13(13):3193.

197

Choi DS, Blanco E, Kim YS, et al. Chloroquine eliminates cancer stem cells through deregulation of Jak2 and DNMT1. Stem Cell. 2014;32(9):2309-2323.

198

Sordillo PP, Helson L. Curcumin and cancer stem cells: curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Res. 2015;35(2):599-614.

199

Tang JY, So PL, Epstein EH Jr. Novel Hedgehog pathway targets against basal cell carcinoma. Toxicol Appl Pharmacol. 2007;224(3):257-264.

200

Pantziarka P, Sukhatme V, Bouche G, et al. Repurposing drugs in oncology (ReDO)-diclofenac as an anti-cancer agent. Ecancermedicalscience. 2016;10:610.

201

Han D, Wu G, Chang C, et al. Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway. Oncotarget. 2015;6(38):40907-40919.

202

Zhang L, Xu L, Zhang F, et al. Doxycycline inhibits the cancer stem cell phenotype and epithelial-to-mesenchymal transition in breast cancer. Cell Cycle. 2017;16(8):737-745.

203

Toden S, Tran HM, Tovar-Camargo OA, et al. Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget. 2016;7(13):16158-16171.

204

Zhang L, Li L, Jiao M, et al. Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Lett. 2012;323(1):48-57.

205

Mai TT, Moon J, Song Y, et al. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett. 2012;321(2):144-153.

206

Ruiz-Magaña MJ, Martínez-Aguilar R, Lucendo E, et al. The antihypertensive drug hydralazine activates the intrinsic pathway of apoptosis and causes DNA damage in leukemic T cells. Oncotarget. 2016;7(16):21875-21886.

207

Amatori S, Bagaloni I, Donati B, et al. DNA demethylating antineoplastic strategies: a comparative point of view. Genes Cancer. 2010;1(3):197-209.

208

Akrami H, Moradi B, Borzabadi Farahani D, et al. Ibuprofen reduces cell proliferation through inhibiting Wnt/β catenin signaling pathway in gastric cancer stem cells. Cell Biol Int. 2018;42(8):949-958.

209

Moon CM, Kwon JH, Kim JS, et al. Nonsteroidal anti-inflammatory drugs suppress cancer stem cells via inhibiting PTGS2 (cyclooxygenase 2) and NOTCH/HES1 and activating PPARG in colorectal cancer. Int J Cancer. 2014;134(3):519-529.

210

Tsubamoto H, Ueda T, Inoue K, et al. Repurposing itraconazole as an anticancer agent. Oncol Lett. 2017;14(2):1240-1246.

211

Guerini AE, Triggiani L, Maddalo M, et al. Mebendazole as a candidate for drug repurposing in oncology: an extensive review of current literature. Cancers. 2019;11(9):1284.

212

Stolfi C, Pallone F, Monteleone G. Colorectal cancer chemoprevention by mesalazine and its derivatives. J Biomed Biotechnol. 2012;2012:980458.

213

Hirsch HA, Iliopoulos D, Tsichlis PN, et al. Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res. 2009;69(19):7507-7511.

214

Saito T, Chiba T, Yuki K, et al. Metformin, a diabetes drug, eliminates tumor-initiating hepatocellular carcinoma cells. PLoS One. 2013;8(7):e70010.

215

Zhao B, Luo J, Wang Y, et al. Metformin suppresses self-renewal ability and tumorigenicity of osteosarcoma stem cells via reactive oxygen species-mediated apoptosis and autophagy. Oxid Med Cell Longev. 2019;2019:9290728.

216

Blanquicett C, Roman J, Hart CM. Thiazolidinediones as anti-cancer agents. Cancer Ther. 2008;6(A):25-34.

217

Li Y, Li PK, Roberts MJ, et al. Multi-targeted therapy of cancer by niclosamide: a new application for an old drug. Cancer Lett. 2014;349(1):8-14.

218

Boesch M, Zeimet AG, Rumpold H, et al. Drug transporter-mediated protection of cancer stem cells from ionophore antibiotics. Stem Cells Transl Med. 2015;4(9):1028-1032.

219

Yuan P, Ito K, Perez-Lorenzo R, et al. Phenformin enhances the therapeutic benefit of BRAF(V600E) inhibition in melanoma. Proc Natl Acad Sci U S A. 2013;110(45):18226-18231.

220

Kakarala M, Brenner DE, Korkaya H, et al. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat. 2010;122(3):777-785.

221

Zhang L, Yao HJ, Yu Y, et al. Mitochondrial targeting liposomes incorporating daunorubicin and quinacrine for treatment of relapsed breast cancer arising from cancer stem cells. Biomaterials. 2012;33(2):565-582.

222

Vogel VG. Update on raloxifene: role in reducing the risk of invasive breast cancer in postmenopausal women. Breast Cancer (Dove Med Press). 2011;3:127-137.

223

Takahara T, Amemiya Y, Sugiyama R, et al. Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J Biomed Sci. 2020;27:87.

224

Zhang Z, Zhou L, Xie N, et al. Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduct Targeted Ther. 2020;5:113.

225

Elisa L, Leslie CA, Christina W, et al. Targeting cancer stem cell survival in plasma cell leukemia with a pan-BCL2 inhibitor. Blood. 2015;126(23):5351.

226

Lu Y, Ma W, Mao J, et al. Salinomycin exerts anticancer effects on human breast carcinoma MCF-7 cancer stem cells via modulation of Hedgehog signaling. Chem Biol Interact. 2015;228:100-107.

227

Dai C, Liu P, Wang X, et al. The antipsychotic agent sertindole exhibited antiproliferative activities by inhibiting the STAT3 signaling pathway in human gastric cancer cells. J Cancer. 2020;11(4):849-857.

228

Ohba S, Hirose Y, Kawase T, et al. Inhibition of c-Jun N-terminal kinase enhances temozolomide-induced cytotoxicity in human glioma cells. J Neuro Oncol. 2009;95(3):307-316.

229

Montales MT, Rahal OM, Kang J, et al. Repression of mammosphere formation of human breast cancer cells by soy isoflavone genistein and blueberry polyphenolic acids suggests diet-mediated targeting of cancer stem-like/progenitor cells. Carcinogenesis. 2012;33(3):652-660.

230

Wang X, Li Y, Dai Y, et al. Sulforaphane improves chemotherapy efficacy by targeting cancer stem cell-like properties via the miR-124/IL-6R/STAT3 axis. Sci Rep. 2016;6:36796.

231

Cheng HW, Liang YH, Kuo YL, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6(5):e1753.

232

Pérez-Plasencia C, Padilla-Benavides T, López-Urrutia E, et al. Editorial: repurposed drugs targeting cancer signaling pathways: clinical insights to improve oncologic therapies. Front Oncol. 2021;11:713040.

233
234

Hosseini A, Ghorbani A. Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna J Phytomed. 2015;5(2):84-97.

235

Rahman MA, Hannan MA, Dash R, et al. Phytochemicals as a complement to cancer chemotherapy: pharmacological modulation of the autophagy-apoptosis pathway. Front Pharmacol. 2021;12:639628.

236

Ranjan A, Ramachandran S, Gupta N, et al. Role of phytochemicals in cancer prevention. Int J Mol Sci. 2019;20(20):4981.

237

Ishikawa H, Saeki T, Otani T, et al. Aged garlic extract prevents a decline of NK cell number and activity in patients with advanced cancer. J Nutr. 2006;136(3 Suppl):816S-820S.

238

Wang H, Wang Y, Gao H, et al. Piperlongumine induces apoptosis and autophagy in leukemic cells through targeting the PI3K/Akt/mTOR and p38 signaling pathways. Oncol Lett. 2018;15(2):1423-1428.

239

Pramanik KC, Fofaria NM, Gupta P, et al. Inhibition of β-catenin signaling suppresses pancreatic tumor growth by disrupting nuclear β-catenin/TCF-1 complex: critical role of STAT-3. Oncotarget. 2015;6(13):11561-11574.

240

Adetunji TL, Olawale F, Olisah C, et al. Capsaicin: a two-decade systematic review of global research output and recent advances against human cancer. Front Oncol. 2022;12:908487.

241

Zughaibi TA, Suhail M, Tarique M, et al. Targeting PI3K/Akt/mTOR pathway by different flavonoids: a cancer chemopreventive approach. Int J Mol Sci. 2021;22(22):12455.

242

Hung SW, Li Y, Chen X, et al. Green tea epigallocatechin-3-gallate regulates autophagy in male and female reproductive cancer. Front Pharmacol. 2022;13:906746.

243

Motiwala MN, Rangari VD. Combined effect of paclitaxel and piperine on a MCF-7 breast cancer cell line in vitro: evidence of a synergistic interaction. Synergy. 2015;2(1):1-6.

244

Pushpa Ragini S, Naga Divya AV, Anusha Ch et al. Enhancement of paclitaxel and doxorubicin cytotoxicity in breast cancer cell lines in combination with piperine treatment and analysis of expression of autophagy and apoptosis genes. J Med Sci Res. 2014;2(2):62-67.

245

Bose C, Awasthi S, Sharma R, et al. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model. PLoS One. 2018;13(3):e0193918.

246

Şakalar Ç, İzgi K, İskender B, et al. The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer. Tumor Biol. 2016;37(4):4467-4477.

247

Bashmail HA, Alamoudi AA, Noorwali A, et al. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci Rep. 2018;8:11674.

248

Dayem AA, Choi HY, Kim JH, et al. Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers. 2010;2(2):859-884.

249

Sun HR, Wang S, Yan SC, et al. Therapeutic strategies targeting cancer stem cells and their microenvironment. Front Oncol. 2019;9:1104.

250

Yuen RC, Tsao SY. Embracing cancer immunotherapy with vital micronutrients. World J Clin Oncol. 2021;12(9):712-724.

251

Kast RE. Potential for all-trans retinoic acid (tretinoin) to enhance interferon-alpha treatment response in chronic myelogenous leukemia, melanoma, myeloma and renal cell carcinoma. Cancer Biol Ther. 2008;7(10):1515-1519.

252

Martino OD, Welch JS. Retinoic acid receptors in acute myeloid leukemia therapy. Cancers. 2019;11(12):1915.

253

Stolzenberg-Solomon RZ, Albanes D, Nieto FJ, et al. Pancreatic cancer risk and nutrition-related methyl-group availability indicators in male smokers. J Natl Cancer Inst. 1999;91(6):535-541.

254

Kaaks R, Tuyns AJ, Haelterman M, et al. Nutrient intake patterns and gastric cancer risk: a case-control study in Belgium. Int J Cancer. 1998;78(4):415-420.

255

Negri E, Franceschi S, Bosetti C, et al. Selected micronutrients and oral and pharyngeal cancer. Int J Cancer. 2000;86:122-127.

256

Hartman TJ, Woodson K, Stolzenberg-Solomon R, et al. Association of the B-vitamins pyridoxal 5'-phosphate (B6), B12, and folate with lung cancer risk in older men. Am J Epidemiol. 2001;153(7):688-694.

257

Key TJ, Silcocks PB, Davey GK, et al. A case-control study of diet and prostate cancer. Br J Cancer. 1997;76(5):678-687.

258

Ginestier C, Wicinski J, Cervera N, et al. Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle. 2009;8(20):3297-3302.

259

De Laurenzi V, Melino G, Savini I, et al. Cell death by oxidative stress and ascorbic acid regeneration in human neuroectodermal cell lines. Eur J Cancer. 1995;31(4):463-466.

260

De Francesco EM, Bonuccelli G, Maggiolini M, et al. Vitamin C and Doxycycline: a synthetic lethal combination therapy targeting metabolic flexibility in cancer stem cells (CSCs). Oncotarget. 2017;8(40):67269-67286.

261

So JY, Suh N. Targeting cancer stem cells in solid tumors by vitamin D. J Steroid Biochem Mol Biol. 2015;148:79-85.

Genes & Diseases
Pages 148-175
Cite this article:
Ajmeera D, Ajumeera R. Drug repurposing: A novel strategy to target cancer stem cells and therapeutic resistance. Genes & Diseases, 2024, 11(1): 148-175. https://doi.org/10.1016/j.gendis.2022.12.013

221

Views

3

Downloads

16

Crossref

12

Web of Science

16

Scopus

0

CSCD

Altmetrics

Received: 05 April 2022
Revised: 21 November 2022
Accepted: 08 December 2022
Published: 20 January 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return