AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (2.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities

Guanjun Yanga,c,d,Changyun Lia,c,dFan Taoa,c,dYanjun Liua,c,dMinghui Zhua,c,dYu Dua,c,dChenjie Feia,c,dQiusheng Sheb( )Jiong Chena,c,d( )
State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China

Peer review under responsibility of Chongqing Medical University.

Show Author Information

Abstract

Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.

References

1

Lo YMD, Han DSC, Jiang P, et al. Epigenetics, fragmentomics, and topology of cell-free DNA in liquid biopsies. Science. 2021;372(6538):eaaw3616.

2

Liu YJ, Wang H, Zhong HJ, et al. Editorial: epigenetics of the immune component of inflammation. Front Immunol. 2022;13:1000836.

3

Yang GJ, Wu J, Miao L, et al. Pharmacological inhibition of KDM5A for cancer treatment. Eur J Med Chem. 2021;226:113855.

4

Yang GJ, Zhu MH, Lu XJ, et al. The emerging role of KDM5A in human cancer. J Hematol Oncol. 2021;14:30.

5

Yang GJ, Lei PM, Wong SY, et al. Pharmacological inhibition of LSD1 for cancer treatment. Molecules. 2018;23(12):3194.

6

Bhat KP, Ümit Kaniskan H, Jin J, et al. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov. 2021;20(4):265–286.

7

Guerra-Calderas L, González-Barrios R, Herrera LA, et al. The role of the histone demethylase KDM4A in cancer. Cancer Genet. 2015;208(5):215–224.

8

Berry WL, Janknecht R. KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells. Cancer Res. 2013;73(10):2936–2942.

9

Baby S, Gurukkala Valapil D, Shankaraiah N. Unravelling KDM4 histone demethylase inhibitors for cancer therapy. Drug Discov Today. 2021;26(8):1841–1856.

10

Lee DH, Kim GW, Jeon YH, et al. Advances in histone demethylase KDM4 as cancer therapeutic targets. Faseb J. 2020;34(3):3461–3484.

11

Labbé RM, Holowatyj A, Yang ZQ. Histone lysine demethylase (KDM) subfamily 4:structures, functions and therapeutic potential. Am J Transl Res. 2013;6(1):1–15.

12

Qi Q, Wang Y, Wang X, et al. Histone demethylase KDM4A regulates adipogenic and osteogenic differentiation via epigenetic regulation of C/EBPα and canonical Wnt signaling. Cell Mol Life Sci. 2020;77(12):2407–2421.

13

Cascante A, Klum S, Biswas M, et al. Gene-specific methylation control of H3K9 and H3K36 on neurotrophic BDNF versus astroglial GFAP genes by KDM4A/C regulates neural stem cell differentiation. J Mol Biol. 2014;426(20):3467–3477.

14

Wu L, Wary KK, Revskoy S, et al. Histone demethylases KDM4A and KDM4C regulate differentiation of embryonic stem cells to endothelial cells. Stem Cell Rep. 2015;5(1):10–21.

15

Sankar A, Kooistra SM, Gonzalez JM, et al. Maternal expression of the histone demethylase Kdm4a is crucial for pre-implantation development. Development. 2017;144(18):3264–3277.

16

Sankar A, Lerdrup M, Manaf A, et al. KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes. Nat Cell Biol. 2020;22(4):380–388.

17

Zhu HY, Kang XJ, Jin L, et al. Histone demethylase KDM4A overexpression improved the efficiency of corrected human tripronuclear zygote development. Mol Hum Reprod. 2021;27(3):gaab012.

18

Zhu Q, Liang F, Cai S, et al. KDM4A regulates myogenesis by demethylating H3K9me3 of myogenic regulatory factors. Cell Death Dis. 2021;12(6):514.

19

Hung KH, Woo YH, Lin IY, et al. The KDM4A/KDM4C/NF-κB and WDR5 epigenetic cascade regulates the activation of B cells. Nucleic Acids Res. 2018;46(11):5547–5560.

20

Hu Q, Zhang J, Wu X, et al. Histone demethylase JMJD2A inhibition attenuates neointimal hyperplasia in the carotid arteries of balloon-injured diabetic rats via transcriptional silencing: inflammatory gene expression in vascular smooth muscle cells. Cell Physiol Biochem. 2015;37(2):719–734.

21

Zhang QJ, Chen HZ, Wang L, et al. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest. 2011;121(6):2447–2456.

22

Hu Q, Chen J, Zhang J, et al. IOX1, a JMJD2A inhibitor, suppresses the proliferation and migration of vascular smooth muscle cells induced by angiotensin Ⅱ by regulating the expression of cell cycle-related proteins. Int J Mol Med. 2016;37:189–196.

23

Yang WS, Yeh WW, Campbell M, et al. Long non-coding RNA KIKAT/LINC01061 as a novel epigenetic regulator that relocates KDM4A on chromatin and modulates viral reactivation. PLoS Pathog. 2021;17(6):e1009670.

24

Gautam D, Johnson BA, Mac M, et al. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. PLoS Pathog. 2018;14(10):e1007367.

25

Yang WS, Campbell M, Chang PC. SUMO modification of a heterochromatin histone demethylase JMJD2A enables viral gene transactivation and viral replication. PLoS Pathog. 2017;13(2):e1006216.

26

Chang PC, Fitzgerald LD, Hsia DA, et al. Histone demethylase JMJD2A regulates Kaposi’s sarcoma-associated herpesvirus replication and is targeted by a viral transcriptional factor. J Virol. 2011;85(7):3283–3293.

27

Park SY, Seo J, Chun YS. Targeted downregulation of kdm4a ameliorates tau-engendered defects in Drosophila melanogaster. J Kor Med Sci. 2019;34(33):e225.

28

Ishiguro K, Watanabe O, Nakamura M, et al. Inhibition of KDM4A activity as a strategy to suppress interleukin-6 production and attenuate colitis induction. Clin Immunol. 2017;180:120–127.

29

Skarnes WC, Rosen B, West AP, et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature. 2011;474(7351):337–342.

30

Tan MK, Lim HJ, Harper JW. SCF(FBXO22) regulates histone H3 lysine 9 and 36 methylation levels by targeting histone demethylase KDM4A for ubiquitin-mediated proteasomal degradation. Mol Cell Biol. 2011;31(18):3687–3699.

31

Lee JE, Chung YG, Eum JH, et al. An efficient SCNT technology for the establishment of personalized and public human pluripotent stem cell banks. BMB Rep. 2016;49(4):197–198.

32

Sen A, Gurdziel K, Liu J, et al. Smooth, an hnRNP-L homolog, might decrease mitochondrial metabolism by post-transcriptional regulation of isocitrate dehydrogenase (Idh) and other metabolic genes in the sub-acute phase of traumatic brain injury. Front Genet. 2017;8:175.

33

Su Z, Wang F, Lee JH, et al. Reader domain specificity and lysine demethylase-4 family function. Nat Commun. 2016;7:13387.

34

Agger K, Nishimura K, Miyagi S, et al. The KDM4/JMJD2 histone demethylases are required for hematopoietic stem cell maintenance. Blood. 2019;134(14):1154–1158.

35

Carbonneau M, Gagné L, Lalonde ME, et al. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat Commun. 2016;7:12700.

36

Verrier L, Escaffit F, Chailleux C, et al. A new isoform of the histone demethylase JMJD2A/KDM4A is required for skeletal muscle differentiation. PLoS Genet. 2011;7(6):e1001390.

37

Prajapati RS, Hintze M, Streit A. PRDM1 controls the sequential activation of neural, neural crest and sensory progenitor determinants. Development. 2019;146(24):dev181107.

38

Ruan D, Peng J, Wang X, et al. XIST derepression in active X chromosome hinders pig somatic cell nuclear transfer. Stem Cell Rep. 2018;10(2):494–508.

39

Chung YG, Matoba S, Liu Y, et al. Histone demethylase expression enhances human somatic cell nuclear transfer efficiency and promotes derivation of pluripotent stem cells. Cell Stem Cell. 2015;17(6):758–766.

40

Pedersen MT, Kooistra SM, Radzisheuskaya A, et al. Continual removal of H3K9 promoter methylation by Jmjd2 demethylases is vital for ESC self-renewal and early development. EMBO J. 2016;35(14):1550–1564.

41

Strobl-Mazzulla PH, Sauka-Spengler T, Bronner-Fraser M. Histone demethylase JmjD2A regulates neural crest specification. Dev Cell. 2010;19(3):460–468.

42

Qin G, Li Y, Wang H, et al. Lysine-specific demethylase 4A regulates osteogenic differentiation via regulating the binding ability of H3K9me3 with the promoters of Runx 2, osterix and osteocalcin. J Biomed Nanotechnol. 2020;16(6):899–909.

43

Yeh WW, Chen YQ, Yang WS, et al. SUMO modification of histone demethylase KDM4A in Kaposi’s sarcoma-associated herpesvirus-induced primary effusion lymphoma. J Virol. 2022;96(16):e0075522.

44

Liu Y, Zhao L, Zhang J, et al. Histone demethylase KDM4A inhibition represses neuroinflammation and improves functional recovery in ischemic stroke. Curr Pharmaceut Des. 2021;27(21):2528–2536.

45

Zhang Y, Yuan Y, Li Z, et al. An interaction between BRG1 and histone modifying enzymes mediates lipopolysaccharide-induced proinflammatory cytokines in vascular endothelial cells. J Cell Biochem. 2019;120(8):13216–13225.

46

Zhao T, Wu D, Du J, et al. Folic acid attenuates glial activation in neonatal mice and improves adult mood disorders through epigenetic regulation. Front Pharmacol. 2022;13:818423.

47

Gray SG, Iglesias AH, Lizcano F, et al. Functional characterization of JMJD2A, a histone deacetylase- and retinoblastoma-binding protein. J Biol Chem. 2005;280(31):28507–28518.

48

Yang GJ, Wu J, Leung CH, et al. A review on the emerging roles of pyruvate kinase M2 in anti-leukemia therapy. Int J Biol Macromol. 2021;193:1499–1506.

49

Massett ME, Monaghan L, Patterson S, et al. A KDM4A-PAF1-mediated epigenomic network is essential for acute myeloid leukemia cell self-renewal and survival. Cell Death Dis. 2021;12(6):573.

50

Dong A, Yang W, Huang H, et al. Bioinformatics analysis of the network of histone H3 lysine 9 trimethylation in acute myeloid leukaemia. Oncol Rep. 2020;44(2):543–554.

51

Filiú-Braga LDC, Serejo TRT, Lucena-Araujo AR, et al. Unraveling KDM4 histone demethylase expression and its association with adverse cytogenetic findings in chronic lymphocytic leukemia. Med Oncol. 2018;36(1):3.

52

Boila LD, Chatterjee SS, Banerjee D, et al. KDM6 and KDM4 histone lysine demethylases emerge as molecular therapeutic targets in human acute myeloid leukemia. Exp Hematol. 2018;58:44–51. e7.

53

Mar BG, Chu SH, Kahn JD, et al. SETD2 alterations impair DNA damage recognition and lead to resistance to chemotherapy in leukemia. Blood. 2017;130(24):2631–2641.

54

Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA A Cancer J Clin. 2023;73(1):17–48.

55

Sun S, Yang F, Zhu Y, et al. KDM4A promotes the growth of non-small cell lung cancer by mediating the expression of Myc via DLX5 through the Wnt/β-catenin signaling pathway. Life Sci. 2020;262:118508.

56

Marvalim C, Wong JXG, Sutiman N, et al. Influence of the KDM4A rs586339 polymorphism on overall survival in Asian non-small-cell lung cancer patients. Pharmacogenetics Genom. 2017;27(3):120–123.

57

Soini Y, Kosma VM, Pirinen R. KDM4A, KDM4B and KDM4C in non-small cell lung cancer. Int J Clin Exp Pathol. 2015;8(10):12922–12928.

58

Jiang K, Shen M, Chen Y, et al. miR-150 promotes the proliferation and migration of non-small cell lung cancer cells by regulating the SIRT2/JMJD2A signaling pathway. Oncol Rep. 2018;4:943–951.

59

Xu W, Jiang K, Shen M, et al. Jumonji domain containing 2A predicts prognosis and regulates cell growth in lung cancer depending on miR-150. Oncol Rep. 2016;35:352–358.

60

Van Rechem C, Black JC, Greninger P, et al. A coding single-nucleotide polymorphism in lysine demethylase KDM4A associates with increased sensitivity to mTOR inhibitors. Cancer Discov. 2015;5(3):245–254.

61

Wang J, Wang H, Wang LY, et al. Silencing the epigenetic silencer KDM4A for TRAIL and DR5 simultaneous induction and antitumor therapy. Cell Death Differ. 2016;23(11):1886–1896.

62

Kogure M, Takawa M, Cho HS, et al. Deregulation of the histone demethylase JMJD2A is involved in human carcinogenesis through regulation of the G1/S transition. Cancer Lett. 2013;336(1):76–84.

63

Mallette FA, Richard S. JMJD2A promotes cellular transformation by blocking cellular senescence through transcriptional repression of the tumor suppressor CHD5. Cell Rep. 2012;2(5):1233–1243.

64

Bagchi A, Papazoglu C, Wu Y, et al. CHD5 is a tumor suppressor at human 1p36. Cell. 2007;128(3):459–475.

65

Han N, Yuan X, Wu H, et al. DACH1 inhibits lung adenocarcinoma invasion and tumor growth by repressing CXCL5 signaling. Oncotarget. 2015;6(8):5877–5888.

66

Zhou Y, Shurin GV, Zhong H, et al. Schwann cells augment cell spreading and metastasis of lung cancer. Cancer Res. 2018;78(20):5927–5939.

67

Wang L, Shi L, Gu J, et al. CXCL5 regulation of proliferation and migration in human non-small cell lung cancer cells. J Physiol Biochem. 2018;74(2):313–324.

68

Kuo PL, Huang MS, Hung JY, et al. Synergistic effect of lung tumor-associated dendritic cell-derived HB-EGF and CXCL5 on cancer progression. Int J Cancer. 2014;135(1):96–108.

69

Wang J, Hu T, Wang Q, et al. Repression of the AURKA-CXCL5 axis induces autophagic cell death and promotes radiosensitivity in non-small-cell lung cancer. Cancer Lett. 2021;509:89–104.

70

Kachroo P, Lee MH, Zhang L, et al. IL-27 inhibits epithelial-mesenchymal transition and angiogenic factor production in a STAT1-dominant pathway in human non-small cell lung cancer. J Exp Clin Cancer Res. 2013;32(1):97.

71

Ieguchi K, Tomita T, Takao T, et al. Analysis of ADAM12-mediated ephrin-A1 cleavage and its biological functions. Int J Mol Sci. 2021;22(5):2480.

72

Rocks N, Estrella C, Paulissen G, et al. The metalloproteinase ADAM-12 regulates bronchial epithelial cell proliferation and apoptosis. Cell Prolif. 2008;41(6):988–1001.

73

Duan Q, Li D, Xiong L, et al. SILAC quantitative proteomics and biochemical analyses reveal a novel molecular mechanism by which ADAM12S promotes the proliferation, migration, and invasion of small cell lung cancer cells through upregulating hexokinase 1. J Proteome Res. 2019;18(7):2903–2914.

74

Rocks N, Paulissen G, Quesada Calvo F, et al. Expression of a disintegrin and metalloprotease (ADAM and ADAMTS) enzymes in human non-small-cell lung carcinomas (NSCLC). Br J Cancer. 2006;94(5):724–730.

75

Yue C, Ma H, Zhou Y. Identification of prognostic gene signature associated with microenvironment of lung adenocarcinoma. PeerJ. 2019;7:e8128.

76

Choi K, Ahn YH, Gibbons DL, et al. Distinct biological roles for the Notch ligands jagged-1 and jagged-2. J Biol Chem. 2009;284(26):17766–17774.

77

Dos Santos SN, Sheldon H, Pereira JX, et al. Galectin-3 acts as an angiogenic switch to induce tumor angiogenesis via Jagged-1/Notch activation. Oncotarget. 2017;8(30):49484–49501.

78

Patani N, Jiang WG, Newbold RF, et al. Histone-modifier gene expression profiles are associated with pathological and clinical outcomes in human breast cancer. Anticancer Res. 2011;31(12):4115–4125.

79

Li BX, Li J, Luo CL, et al. Expression of JMJD2A in infiltrating duct carcinoma was markedly higher than fibroadenoma, and associated with expression of ARHI, p53 and ER in infiltrating duct carcinoma. Indian J Exp Biol. 2013;51(3):208–217.

80

Slee RB, Steiner CM, Herbert BS, et al. Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability. Oncogene. 2012;31(27):3244–3253.

81

Ye Q, Holowatyj A, Wu J, et al. Genetic alterations of KDM4 subfamily and therapeutic effect of novel demethylase inhibitor in breast cancer. Am J Cancer Res. 2015;5(4):1519–1530.

82

Berry WL, Shin S, Lightfoot SA, et al. Oncogenic features of the JMJD2A histone demethylase in breast cancer. Int J Oncol. 2012;41(5):1701–1706.

83

Bhan A, Ansari KI, Chen MY, et al. Inhibition of Jumonji histone demethylases selectively suppresses HER2+ breast leptomeningeal carcinomatosis growth via inhibition of GMCSF expression. Cancer Res. 2021;81(12):3200–3214.

84

Li L, Gao P, Li Y, et al. JMJD2A-dependent silencing of Sp1 in advanced breast cancer promotes metastasis by downregulation of DIRAS3. Breast Cancer Res Treat. 2014;147(3):487–500.

85

Li BX, Luo CL, Li H, et al. Effects of siRNA-mediated knockdown of Jumonji domain containing 2A on proliferation, migration and invasion of the human breast cancer cell line MCF-7. Exp Ther Med. 2012;4(4):755–761.

86

Black JC, Atabakhsh E, Kim J, et al. Hypoxia drives transient site-specific copy gain and drug-resistant gene expression. Genes Dev. 2015;29(10):1018–1031.

87

Black JC, Zhang H, Kim J, et al. Regulation of transient site-specific copy gain by microRNA. J Biol Chem. 2016;291(10):4862–4871.

88

Knudsen KE, Penning TM. Partners in crime: deregulation of AR activity and androgen synthesis in prostate cancer. Trends Endocrinol Metabol. 2010;21(5):315–324.

89

Shin S, Janknecht R. Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochem Biophys Res Commun. 2007;359(3):742–746.

90

Yamane K, Toumazou C, Tsukada Y, et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell. 2006;125(3):483–495.

91

Zhang J, Li Q, Zhang S, et al. Lgr4 promotes prostate tumorigenesis through the Jmjd2a/AR signaling pathway. Exp Cell Res. 2016;349(1):77–84.

92

Cui SZ, Lei ZY, Guan TP, et al. Targeting USP1-dependent KDM4A protein stability as a potential prostate cancer therapy. Cancer Sci. 2020;111(5):1567–1581.

93

Kim TD, Jin F, Shin S, et al. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Invest. 2016;126(2):706–720.

94

Kim TD, Oh S, Lightfoot SA, et al. Upregulation of PSMD10 caused by the JMJD2A histone demethylase. Int J Clin Exp Med. 2016;9(6):10123–10134.

95

Kim TD, Shin S, Janknecht R. ETS transcription factor ERG cooperates with histone demethylase KDM4A. Oncol Rep. 2016;35(6):3679–3688.

96

Li X, Moon G, Shin S, et al. Cooperation between ETS variant 2 and Jumonji domain-containing 2 histone demethylases. Mol Med Rep. 2018;17(4):5518–5527.

97

Wang LY, Hung CL, Chen YR, et al. KDM4A coactivates E2F1 to regulate the PDK-dependent metabolic switch between mitochondrial oxidation and glycolysis. Cell Rep. 2016;16(11):3016–3027.

98

Nilsson EM, Laursen KB, Whitchurch J, et al. MiR 137 is an androgen regulated repressor of an extended network of transcriptional coregulators. Oncotarget. 2015;6(34):35710–35725.

99

Mu H, Xiang L, Li S, et al. MiR-10a functions as a tumor suppressor in prostate cancer via targeting KDM4A. J Cell Biochem. 2019;120(4):4987–4997.

100

Yeoh KG, Tan P. Mapping the genomic diaspora of gastric cancer. Nat Rev Cancer. 2022;22(2):71–84.

101

Hu CE, Liu YC, Zhang HD, et al. JMJD2A predicts prognosis and regulates cell growth in human gastric cancer. Biochem Biophys Res Commun. 2014;449(1):1–7.

102

Liu D, Li L, Wang L, et al. Recognition of DNA methylation molecular features for diagnosis and prognosis in gastric cancer. Front Genet. 2021;12:758926.

103

Chen LH, Wang LP, Ma XQ. Circ_SPECC1 enhances the inhibition of miR-526b on downstream KDM4A/YAP1 pathway to regulate the growth and invasion of gastric cancer cells. Biochem Biophys Res Commun. 2019;517(2):253–259.

104

Nakagawa T, Sato Y, Tanahashi T, et al. JMJD2A sensitizes gastric cancer to chemotherapy by cooperating with CCDC8. Gastric Cancer. 2020;23(3):426–436.

105

Chen T, Liu R, Niu Y, et al. HIF-1α-activated long non-coding RNA KDM4A-AS1 promotes hepatocellular carcinoma progression via the miR-411-5p/KPNA2/AKT pathway. Cell Death Dis. 2021;12(12):1152.

106

An J, Xu J, Li J, et al. HistoneH3 demethylase JMJD2A promotes growth of liver cancer cells through up-regulating miR 372. Oncotarget. 2017;8(30):49093–49109.

107

Yang Y, Song S, Meng Q, et al. miR 24-2 accelerates progression of liver cancer cells by activating Pim 1 through tri-methylation of histone H3 on the ninth lysine. J Cell Mol Med. 2020;24(5):2772–2790.

108

Chen DB, Xie XW, Zhao YJ, et al. RFX5 promotes the progression of hepatocellular carcinoma through transcriptional activation of KDM4A. Sci Rep. 2020;10:14538.

109

Ashktorab H, Brim H. Colorectal cancer subtyping. Nat Rev Cancer. 2022;22(2):68–69.

110

Kim TD, Shin S, Berry WL, et al. The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J Cell Biochem. 2012;113(4):1368–1376.

111

Zhao LD, Zheng WW, Wang GX, et al. Epigenetic silencing of miR-181b contributes to tumorigenicity in colorectal cancer by targeting RASSF1A. Int J Oncol. 2016;48(5):1977–1984.

112

Zheng Z, Li L, Liu X, et al. 5-Aza-2’-deoxycytidine reactivates gene expression via degradation of pRb pocket proteins. Faseb J. 2012;26(1):449–459.

113

Mallette FA, Mattiroli F, Cui G, et al. RNF8- and RNF168-dependent degradation of KDM4A/JMJD2A triggers 53BP1 recruitment to DNA damage sites. EMBO J. 2012;31(8):1865–1878.

114

Ding G, Xu X, Li D, et al. Fisetin inhibits proliferation of pancreatic adenocarcinoma by inducing DNA damage via RFXAP/KDM4A-dependent histone H3K36 demethylation. Cell Death Dis. 2020;11(10):893.

115

Neault M, Mallette FA, Richard S. miR-137 modulates a tumor suppressor network-inducing senescence in pancreatic cancer cells. Cell Rep. 2016;14(8):1966–1978.

116

Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA A Cancer J Clin. 2020;70(5):404–423.

117

Kauffman EC, Robinson BD, Downes MJ, et al. Role of androgen receptor and associated lysine-demethylase coregulators, LSD1 and JMJD2A, in localized and advanced human bladder cancer. Mol Carcinog. 2011;50(12):931–944.

118

Wang F, Li Y, Shan F, et al. Upregulation of JMJD2A promotes migration and invasion in bladder cancer through regulation of SLUG. Oncol Rep. 2019;42(4):1431–1440.

119

Li Y, Wang YN, Xie Z, et al. JMJD2A facilitates growth and inhibits apoptosis of cervical cancer cells by downregulating tumor suppressor miR-491-5p. Mol Med Rep. 2019;19(4):2489–2496.

120

Xiong J, Nie M, Fu C, et al. Hypoxia enhances HIF1 α transcription activity by upregulating KDM4A and mediating H3K9me3, thus inducing ferroptosis resistance in cervical cancer cells. Stem Cell Int. 2022;2022:1608806.

121

Shao J, Shi T, Yu H, et al. Cytosolic GDH1 degradation restricts protein synthesis to sustain tumor cell survival following amino acid deprivation. EMBO J. 2021;40(20):e107480.

122

Chen M, Jiang Y, Sun Y. KDM4A-mediated histone demethylation of SLC7A11 inhibits cell ferroptosis in osteosarcoma. Biochem Biophys Res Commun. 2021;550:77–83.

123

Wang B, Fan X, Ma C, et al. Downregulation of KDM4A suppresses the survival of glioma cells by promoting autophagy. J Mol Neurosci. 2016;60(2):137–144.

124

Ding X, Pan H, Li J, et al. Epigenetic activation of AP1 promotes squamous cell carcinoma metastasis. Sci Signal. 2013;6(273):ra28.1–ra28.13. S0-15.

125

Shaulian E, Karin M. AP-1 as a regulator of cell life and death. Nat Cell Biol. 2002;4(5):E131–E136.

126

Wang HL, Liu MM, Ma X, et al. Expression and effects of JMJD2A histone demethylase in endometrial carcinoma. Asian Pac J Cancer Prev APJCP. 2014;15(7):3051–3056.

127

Qiu MT, Fan Q, Zhu Z, et al. KDM4B and KDM4A promote endometrial cancer progression by regulating androgen receptor, c-myc, and p27kip1. Oncotarget. 2015;6(31):31702–31720.

128

Cloos PAC, Christensen J, Agger K, et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature. 2006;442(7100):307–311.

129

Rose NR, Ng SS, Mecinović J, et al. Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J Med Chem. 2008;51(22):7053–7056.

130

Hamada S, Kim TD, Suzuki T, et al. Synthesis and activity of N-oxalylglycine and its derivatives as Jumonji C-domain-containing histone lysine demethylase inhibitors. Bioorg Med Chem Lett. 2009;19(10):2852–2855.

131

Morera L, Roatsch M, Fürst MCD, et al. 4-biphenylalanine- and 3-phenyltyrosine-derived hydroxamic acids as inhibitors of the JumonjiC-domain-containing histone demethylase KDM4A. ChemMedChem. 2016;11(18):2063–2083.

132

King ON, Li XS, Sakurai M, et al. Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors. PLoS One. 2010;5(11):e15535.

133

Wu F, Zhou C, Yao Y, et al. 3-(Piperidin-4-ylmethoxy)pyridine containing compounds are potent inhibitors of lysine specific demethylase 1. J Med Chem. 2016;59(1):253–263.

134

Le Bihan YV, Lanigan RM, Atrash B, et al. C8-substituted pyrido[3, 4-d]pyrimidin-4(3H)-ones: studies towards the identification of potent, cell penetrant Jumonji C domain containing histone lysine demethylase 4 subfamily (KDM4) inhibitors, compound profiling in cell-based target engagement assays. Eur J Med Chem. 2019;177:316–337.

135

Wang L, Chang J, Varghese D, et al. A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth. Nat Commun. 2013;4:2035.

136

Roatsch M, Robaa D, Pippel M, et al. Substituted 2-(2-aminopyrimidin-4-yl)pyridine-4-carboxylates as potent inhibitors of JumonjiC domain-containing histone demethylases. Future Med Chem. 2016;8(13):1553–1571.

137

England KS, Tumber A, Krojer T, et al. Optimisation of a triazolopyridine based histone demethylase inhibitor yields a potent and selective KDM2A (FBXL11) inhibitor. Medchemcommun. 2014;5(12):1879–1886.

138

Bavetsias V, Lanigan RM, Ruda GF, et al. 8-substituted pyrido[3, 4-d]pyrimidin-4(3H)-one derivatives as potent, cell permeable, KDM4 (JMJD2) and KDM5 (JARID1) histone lysine demethylase inhibitors. J Med Chem. 2016;59(4):1388–1409.

139

Westaway SM, Preston AGS, Barker MD, et al. Cell penetrant inhibitors of the KDM4 and KDM5 families of histone lysine demethylases. 2. pyrido[3,4-d]pyrimidin-4(3H)-one derivatives. J Med Chem. 2016;59(4):1370–1387.

140

Westaway SM, Preston AGS, Barker MD, et al. Cell penetrant inhibitors of the KDM4 and KDM5 families of histone lysine demethylases. 1.3-amino-4-pyridine carboxylate derivatives. J Med Chem. 2016;59(4):1357–1369.

141

Wang W, Marholz LJ, Wang X. Novel scaffolds of cell-active histone demethylase inhibitors identified from high-throughput screening. J Biomol Screen. 2015;20(6):821–827.

142

Yang GJ, Ko CN, Zhong HJ, et al. Structure-based discovery of a selective KDM5A inhibitor that exhibits anti-cancer activity via inducing cell cycle arrest and senescence in breast cancer cell lines. Cancers. 2019;11(1):92.

143

Yang GJ, Wang W, Lei PM, et al. A 7-methoxybicoumarin derivative selectively inhibits BRD4 BD2 for anti-melanoma therapy. Int J Biol Macromol. 2020;164:3204–3220.

144

Fang Y, Yang C, Yu Z, et al. Natural products as LSD1 inhibitors for cancer therapy. Acta Pharm Sin B. 2021;11(3):621–631.

145

Feng T, Chen W, Li D, et al. Identification of novel JMJD2A inhibitor scaffold using shape and electrostatic similarity search combined with docking method and MM-GBSA approach. RSC Adv. 2015;5(101):82936–82946.

146

Sakurai M, Rose NR, Schultz L, et al. A miniaturized screen for inhibitors of Jumonji histone demethylases. Mol Biosyst. 2010;6(2):357–364.

147

Xu W, Podoll JD, Dong X, et al. Quantitative analysis of histone demethylase probes using fluorescence polarization. J Med Chem. 2013;56(12):5198–5202.

148

Franci G, Sarno F, Nebbioso A, et al. Identification and characterization of PKF118-310 as a KDM4A inhibitor. Epigenetics. 2017;12(3):198–205.

149

Letfus V, Jelić D, Bokulić A, et al. Rational design, synthesis and biological profiling of new KDM4C inhibitors. Bioorg Med Chem. 2020;28(1):115128.

150

Souto JA, Sarno F, Nebbioso A, et al. A new family of Jumonji C domain-containing KDM inhibitors inspired by natural product purpurogallin. Front Chem. 2020;8:312.

151

Kim TD, Fuchs JR, Schwartz E, et al. Pro-growth role of the JMJD2C histone demethylase in HCT-116 colon cancer cells and identification of curcuminoids as JMJD2 inhibitors. Am J Transl Res. 2014;6(3):236–247.

152

Chu CH, Wang LY, Hsu KC, et al. KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor. J Med Chem. 2014;57(14):5975–5985.

153

Wang H, Dawber RS, Zhang P, et al. Peptide-based inhibitors of protein-protein interactions: biophysical, structural and cellular consequences of introducing a constraint. Chem Sci. 2021;12(17):5977–5993.

154

Lohse B, Nielsen AL, Kristensen JBL, et al. Targeting histone lysine demethylases by truncating the histone 3 tail to obtain selective substrate-based inhibitors. Angew Chem Int Ed Engl. 2011;50(39):9100–9103.

155

Woon ECY, Tumber A, Kawamura A, et al. Linking of 2-oxoglutarate and substrate binding sites enables potent and highly selective inhibition of JmjC histone demethylases. Angew Chem Int Ed Engl. 2012;51(7):1631–1634.

156

Jing X, Jin K. A gold mine for drug discovery: strategies to develop cyclic peptides into therapies. Med Res Rev. 2020;40(2):753–810.

157

Leurs U, Lohse B, Rand KD, et al. Substrate- and cofactor-independent inhibition of histone demethylase KDM4C. ACS Chem Biol. 2014;9(9):2131–2138.

158

Kawamura A, Münzel M, Kojima T, et al. Highly selective inhibition of histone demethylases by de novo macrocyclic peptides. Nat Commun. 2017;8:14773.

159

Ng SS, Kavanagh KL, McDonough MA, et al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity. Nature. 2007;448(7149):87–91.

160

Sekirnik R, Rose NR, Thalhammer A, et al. Inhibition of the histone lysine demethylase JMJD2A by ejection of structural Zn(Ⅱ). Chem Commun. 2009(42):6376–6378.

161

Kim YJ, Lee DH, Choi YS, et al. Benzo[b]tellurophenes as a potential histone H3 lysine 9 demethylase (KDM4) inhibitor. Int J Mol Sci. 2019;20(23):5908.

162

Lee HJ, Kim BK, Yoon KB, et al. Novel inhibitors of lysine (K)-specific demethylase 4A with anticancer activity. Invest N Drugs. 2017;35(6):733–741.

163

Li Y, Wang C, Gao H, et al. KDM4 inhibitor SD49-7 attenuates leukemia stem cell via KDM4A/MDM2/p21CIP1 axis. Theranostics. 2022;12(11):4922–4934.

164

Luo X, Liu Y, Kubicek S, et al. A selective inhibitor and probe of the cellular functions of Jumonji C domain-containing histone demethylases. J Am Chem Soc. 2011;133(24):9451–9456.

165

Ozboyaci M, Gursoy A, Erman B, et al. Molecular recognition of H3/H4 histone tails by the Tudor domains of JMJD2A: a comparative molecular dynamics simulations study. PLoS One. 2011;6(3):e14765.

166

Zucconi BE, Cole PA. Allosteric regulation of epigenetic modifying enzymes. Curr Opin Chem Biol. 2017;39:109–115.

167

Yang GJ, Tao F, Zhong HJ, et al. Targeting PGAM1 in cancer: an emerging therapeutic opportunity. Eur J Med Chem. 2022;244:114798.

168

Yang GJ, Liu YJ, Ding LJ, et al. A state-of-the-art review on LSD1 and its inhibitors in breast cancer: molecular mechanisms and therapeutic significance. Front Pharmacol. 2022;13:989575.

169

Wu KJ, Zhong HJ, Yang G, et al. Small molecule Pin 1 inhibitor blocking NF-κB signaling in prostate cancer cells. Chem Asian J. 2018;13(3):275–279.

170

Cheng S, Yang GJ, Wang W, et al. Discovery of a tetrahydroisoquinoline-based CDK9-cyclin T1 protein-protein interaction inhibitor as an anti-proliferative and anti-migration agent against triple-negative breast cancer cells. Genes Dis. 2022;9(6):1674–1688.

171

Cheng S, Yang GJ, Wang W, et al. Identification of a cytisine-based EED-EZH2 protein-protein interaction inhibitor preventing metastasis in triple-negative breast cancer cells. Acta Mater Med. 2022;1(2):197–211.

172

Cheng SS, Yang GJ, Wang W, et al. The design and development of covalent protein-protein interaction inhibitors for cancer treatment. J Hematol Oncol. 2020;13:26.

173

Yang GJ, Song YQ, Wang WH, et al. An optimized BRD4 inhibitor effectively eliminates NF-κB-driven triple-negative breast cancer cells. Bioorg Chem. 2021;114:105158.

174

Cheng SS, Qu YQ, Wu J, et al. Inhibition of the CDK9-cyclin T1 protein-protein interaction as a new approach against triple-negative breast cancer. Acta Pharm Sin B. 2022;12(3):1390–1405.

175

Zhao D, Zhang W, Yu S, et al. Application of MOF-based nanotherapeutics in light-mediated cancer diagnosis and therapy. J Nanobiotechnol. 2022;20:421.

176

Zhong XD, Chen LJ, Xu XY, et al. Berberine as a potential agent for breast cancer therapy. Front Oncol. 2022;12:993775.

177

Yang GJ, Wang W, Mok SWF, et al. Selective inhibition of lysine-specific demethylase 5A (KDM5A) using a rhodium(Ⅲ) complex for triple-negative breast cancer therapy. Angew Chem Int Ed Engl. 2018;57(40):13091–13095.

178

Yang GJ, Zhong HJ, Ko CN, et al. Identification of a rhodium(ⅲ) complex as a Wee 1 inhibitor against TP53-mutated triple-negative breast cancer cells. Chem Commun. 2018;54(20):2463–2466.

Genes & Diseases
Pages 645-663
Cite this article:
Yang G, Li C, Tao F, et al. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes & Diseases, 2024, 11(2): 645-663. https://doi.org/10.1016/j.gendis.2022.12.020

246

Views

3

Downloads

7

Crossref

5

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 28 November 2022
Accepted: 28 December 2022
Published: 23 March 2023
© 2023 The Authors.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return