AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Full Length Article | Open Access

Cerebral furin deficiency causes hydrocephalus in mice

Shiqi Xiea,1Xiaoyong Xieb,1Jing TangbBiao LuobJian ChenbQixin WenbJianrong Zhoua( )Guojun Chenb( )
Nursing College, Chongqing Medical University, Chongqing 400016, China
Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing 400016, China

Peer review under responsibility of Chongqing Medical University.

1 These authors contributed equally to this work.

Show Author Information

Abstract

Furin is a pro-protein convertase that moves between the trans-Golgi network and cell surface in the secretory pathway. We have previously reported that cerebral overexpression of furin promotes cognitive functions in mice. Here, by generating the brain-specific furin conditional knockout (cKO) mice, we investigated the role of furin in brain development. We found that furin deficiency caused early death and growth retardation. Magnetic resonance imaging showed severe hydrocephalus. In the brain of furin cKO mice, impaired ciliogenesis and the derangement of microtubule structures appeared along with the down-regulated expression of RAB28, a ciliary vesicle protein. In line with the widespread neuronal loss, ependymal cell layers were damaged. Further proteomics analysis revealed that cell adhesion molecules including astrocyte-enriched ITGB8 and BCAR1 were altered in furin cKO mice; and astrocyte overgrowth was accompanied by the reduced expression of SOX9, indicating a disrupted differentiation into ependymal cells. Together, whereas alteration of RAB28 expression correlated with the role of vesicle trafficking in ciliogenesis, dysfunctional astrocytes might be involved in ependymal damage contributing to hydrocephalus in furin cKO mice. The structural and molecular alterations provided a clue for further studying the potential mechanisms of furin.

References

1

Munch TN, Rostgaard K, Rasmussen ML, Wohlfahrt J, Juhler M, Melbye M. Familial aggregation of congenital hydrocephalus in a nationwide cohort. Brain. 2012;135(Pt 8):2409–2415.

2

Kahle KT, Kulkarni AV, Limbrick DD, Warf BC. Hydrocephalus in children. Lancet. 2016;387(10020):788–799.

3

Zhang J, Williams MA, Rigamonti D. Genetics of human hydrocephalus. J Neurol. 2006;253(10):1255–1266.

4

McAllister JP. Pathophysiology of congenital and neonatal hydrocephalus. Semin Fetal Neonatal Med. 2012;17(5):285–294.

5

Ji W, Tang Z, Chen Y, et al. Ependymal cilia: physiology and role in hydrocephalus. Front Mol Neurosci. 2022;15:927479.

6

Nakayama K. Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J. 1997;327(Pt 3):625–635.

7

Thomas G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat Rev Mol Cell Biol. 2002;3(10):753–766.

8

Fitzgerald K. Furin protease: from SARS CoV-2 to Anthrax, diabetes, and hypertension. Perm J. 2020;24:20.187.

9

Osman EEA, Rehemtulla A, Neamati N. Why all the fury over furin? J Med Chem. 2022;65(4):2747–2784.

10

Braun E, Sauter D. Furin-mediated protein processing in infectious diseases and cancer. Clin Transl Immunology. 2019;8(8):e1073.

11

Ren K, Jiang T, Zheng XL, Zhao GJ. Proprotein convertase furin/PCSK3 and atherosclerosis: new insights and potential therapeutic targets. Atherosclerosis. 2017;262:163–170.

12

Hwang EM, Kim SK, Sohn JH, et al. Furin is an endogenous regulator of α-secretase associated APP processing. Biochem Biophys Res Commun. 2006;349(2):654–659.

13

Zhang Y, Gao X, Bai X, Yao S, Chang YZ, Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl Neurodegener. 2022;11(1):39.

14

Zhu B, Zhao L, Luo D, et al. Furin promotes dendritic morphogenesis and learning and memory in transgenic mice. Cell Mol Life Sci. 2018;75(13):2473–2488.

15

Yang Y, He M, Tian X, et al. Transgenic overexpression of furin increases epileptic susceptibility. Cell Death Dis. 2018;9(11):1058.

16

Scamuffa N, Calvo F, Chrétien M, Seidah NG, Khatib AM. Proprotein convertases: lessons from knockouts. Faseb J. 2006;20(12):1954–1963.

17

Bernal A, Arranz L. Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci. 2018;75(12):2177–2195.

18

Sclafani AM, Skidmore JM, Ramaprakash H, Trumpp A, Gage PJ, Martin DM. Nestin-Cre mediated deletion of Pitx2 in the mouse. Genesis. 2006;44(7):336–344.

19

Hu XT, Zhu BL, Zhao LG, et al. Histone deacetylase inhibitor apicidin increases expression of the α-secretase ADAM10 through transcription factor USF1-mediated mechanisms. Faseb J. 2017;31(4):1482–1493.

20

Wen QX, Luo B, Xie XY, et al. AP2S1 regulates APP degradation through late endosome-lysosome fusion in cells and APP/PS1 mice. Traffic. 2023;24(1):20–33.

21

Im K, Mareninov S, Diaz MP, Yong WH. An introduction to performing immunofluorescence staining. Methods Mol Biol. 2019;1897:299–311.

22

Valnes K, Brandtzaeg P. Paired indirect immunoenzyme staining with primary antibodies from the same species. Application of horseradish peroxidase and alkaline phosphatase as sequential labels. Histochem J. 1984;16(5):477–487.

23

Cohen AR, Leifer DW, Zechel M, Flaningan DP, Lewin JS, Lust WD. Characterization of a model of hydrocephalus in transgenic mice. J Neurosurg. 1999;91(6):978–988.

24

Nagashima K, Zheng J, Parmiter D, Patri AK. Biological tissue and cell culture specimen preparation for TEM nanoparticle characterization. Methods Mol Biol. 2011;697:83–91.

25

Nowell JA, Pawley JB. Preparation of experimental animal tissue for SEM. Scanning Electron Microsc. 1980(pt 2):1–19.

26

Ma L, Du Y, Xu X, et al. β-catenin deletion in regional neural progenitors leads to congenital Hydrocephalus in mice. Neurosci Bull. 2022;38(1):81–94.

27

Lakso M, Pichel JG, Gorman JR, et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci U S A. 1996;93(12):5860–5865.

28

Banizs B, Pike MM, Millican CL, et al. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development. 2005;132(23):5329–5339.

29

Del Bigio MR. Ependymal cells: biology and pathology. Acta Neuropathol. 2010;119(1):55–73.

30

Kumar V, Umair Z, Kumar S, Goutam RS, Park S, Kim J. The regulatory roles of motile cilia in CSF circulation and hydrocephalus. Fluids Barriers CNS. 2021;18(1):31.

31

Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol. 2007;69:377–400.

32

Zhao H, Khan Z, Westlake CJ. Ciliogenesis membrane dynamics and organization. Semin Cell Dev Biol. 2023;133:20–31.

33

Lumb JH, Leung KF, Dubois KN, Field MC. Rab28 function in trypanosomes: interactions with retromer and ESCRT pathways. J Cell Sci. 2011;124(pt 22):3771–3783.

34

Wolf HK, Buslei R, Schmidt-Kastner R, et al. NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem. 1996;44(10):1167–1171.

35

Mitchell DR. Speculations on the evolution of 9+2 organelles and the role of central pair microtubules. Biol Cell. 2004;96(9):691–696.

36

Ohata S, Nakatani J, Herranz-Pérez V, et al. Loss of Dishevelleds disrupts planar polarity in ependymal motile Cilia and results in Hydrocephalus. Neuron. 2014;83(3):558–571.

37

Park R, Moon UY, Park JY, et al. Yap is required for ependymal integrity and is suppressed in LPA-induced hydrocephalus. Nat Commun. 2016;7:10329.

38

Schäfer MKE, Altevogt P. L1CAM malfunction in the nervous system and human carcinomas. Cell Mol Life Sci. 2010;67(14):2425–2437.

39

Nechiporuk T, Fernandez TE, Vasioukhin V. Failure of epithelial tube maintenance causes Hydrocephalus and renal cysts in Dlg5−/− mice. Dev Cell. 2007;13(3):338–350.

40

Simpson JE, Ince PG, Shaw PJ, et al. Microarray analysis of the astrocyte transcriptome in the aging brain: relationship to Alzheimer’s pathology and APOE genotype. Neurobiol Aging. 2011;32(10):1795–1807.

41

Yang J, Liu AY, Tang B, et al. Chronic nicotine differentially affects murine transcriptome profiling in isolated cortical interneurons and pyramidal neurons. BMC Genom. 2017;18(1):194.

42

Cho S, Muthukumar AK, Stork T, Coutinho-Budd JC, Freeman MR. Focal adhesion molecules regulate astrocyte morphology and glutamate transporters to suppress seizure-like behavior. Proc Natl Acad Sci U S A. 2018;115(44):11316–11321.

43

Brenner M, Messing A. Regulation of GFAP expression. ASN Neuro. 2021;13:1759091420981206.

44

Roales-Buján R, Páez P, Guerra M, et al. Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus. Acta Neuropathol. 2012;124(4):531–546.

45

Sun W, Cornwell A, Li J, et al. SOX9 is an astrocyte-specific nuclear marker in the adult brain outside the neurogenic regions. J Neurosci. 2017;37(17):4493–4507.

46

Scott CE, Wynn SL, Sesay A, et al. SOX9 induces and maintains neural stem cells. Nat Neurosci. 2010;13(10):1181–1189.

47

Merkle FT, Tramontin AD, García-Verdugo JM, Alvarez-Buylla A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A. 2004;101(50):17528–17532.

48

Shapey J, Toma A, Saeed SR. Physiology of cerebrospinal fluid circulation. Curr Opin Otolaryngol Head Neck Surg. 2019;27(5):326–333.

49

Bohr T, Hjorth PG, Holst SC, et al. The glymphatic system: current understanding and modeling. iScience. 2022;25(9):104987.

50

Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016–1024.

51

Jiménez AJ, Domínguez-Pinos MD, Guerra MM, Fernández-Llebrez P, Pérez-Fígares JM. Structure and function of the ependymal barrier and diseases associated with ependyma disruption. Tissue Barriers. 2014;2:e28426.

52

Shetty AK, Zanirati G. The interstitial system of the brain in health and disease. Aging Dis. 2020;11(1):200–211.

53

Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):26.

54

Delgehyr N, Meunier A, Faucourt M, et al. Ependymal cell differentiation, from monociliated to multiciliated cells. Methods Cell Biol. 2015;127:19–35.

55

Abdelhamed Z, Vuong SM, Hill L, et al. A mutation in Ccdc39 causes neonatal hydrocephalus with abnormal motile cilia development in mice. Development. 2018;145(1):dev154500.

56

Tissir F, Qu Y, Montcouquiol M, et al. Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat Neurosci. 2010;13(6):700–707.

57

Reiter JF, Leroux MR. Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 2017;18(9):533–547.

58

Jespersgaard C, Hey AB, Ilginis T, et al. A missense mutation in RAB28 in a family with cone-rod dystrophy and postaxial polydactyly prevents localization of RAB28 to the primary Cilium. Invest Ophthalmol Vis Sci. 2020;61(2):29.

59

Jensen VL, Carter S, Sanders AA, et al. Whole-organism developmental expression profiling identifies RAB-28 as a novel ciliary GTPase associated with the BBSome and intraflagellar transport. PLoS Genet. 2016;12(12):e1006469.

60

Kim J, Lee JE, Heynen-Genel S, et al. Functional genomic screen for modulators of ciliogenesis and cilium length. Nature. 2010;464(7291):1048–1051.

61

Nelles DG, Hazrati LN. Ependymal cells and neurodegenerative disease: outcomes of compromised ependymal barrier function. Brain Commun. 2022;4(6):fcac288.

62

Saugier-Veber P, Marguet F, Lecoquierre F, et al. Hydrocephalus due to multiple ependymal malformations is caused by mutations in the MPDZ gene. Acta Neuropathol Commun. 2017;5(1):36.

63

Wang X, Zhou Y, Wang J, et al. SNX27 deletion causes Hydrocephalus by impairing ependymal cell differentiation and ciliogenesis. J Neurosci. 2016;36(50):12586–12597.

64

Bronson RT, Lane PW. Hydrocephalus with hop gait (hyh): a new mutation on chromosome 7 in the mouse. Dev Brain Res. 1990;54(1):131–136.

65

Jiménez AJ, Tomé M, Páez P, et al. A programmed ependymal denudation precedes congenital Hydrocephalus in the hyh mutant mouse. J Neuropathol Exp Neurol. 2001;60(11):1105–1119.

66

Rosenberg GA, Kyner WT, Estrada E. Bulk flow of brain interstitial fluid under normal and hyperosmolar conditions. Am J Physiol. 1980;238(1):F42-F49.

67

Benarroch EE. Choroid plexus-CSF system: recent developments and clinical correlations. Neurology. 2016;86(3):286–296.

68

Swiderski RE, Agassandian K, Ross JL, Bugge K, Cassell MD, Yeaman C. Structural defects in cilia of the choroid plexus, subfornical organ and ventricular ependyma are associated with ventriculomegaly. Fluids Barriers CNS. 2012;9(1):22.

69

Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32(12):638–647.

70

Lee TK, Kim H, Song M, et al. Time-course pattern of neuronal loss and gliosis in gerbil hippocampi following mild, severe, or lethal transient global cerebral ischemia. Neural Regen Res. 2019;14(8):1394–1403.

71

Nitzan K, Benhamron S, Valitsky M, et al. Mitochondrial transfer ameliorates cognitive deficits, neuronal loss, and gliosis in Alzheimer’s disease mice. J Alzheimers Dis. 2019;72(2):587–604.

72

Yang Y, Wang C, Chen R, et al. Novel therapeutic modulators of astrocytes for hydrocephalus. Front Mol Neurosci. 2022;15:932955.

73

Varela MF, Miyabe MM, Oria M. Fetal brain damage in congenital hydrocephalus. Childs Nerv Syst. 2020;36(8):1661–1668.

74

Singh M, Garrison JE, Wang K, Sheffield VC. Absence of BBSome function leads to astrocyte reactivity in the brain. Mol Brain. 2019;12(1):48.

75

Jaudon F, Thalhammer A, Cingolani LA. Integrin adhesion in brain assembly: from molecular structure to neuropsychiatric disorders. Eur J Neurosci. 2021;53(12):3831–3850.

76

De A, Morales JE, Chen Z, Sebastian S, McCarty JH. The β8 integrin cytoplasmic domain activates extracellular matrix adhesion to promote brain neurovascular development. Development. 2022;149(6):dev200472.

77

Kumar V, Maurya VK, Joshi A, Meeran SM, Jha RK. Integrin beta 8 (ITGB8) regulates embryo implantation potentially via controlling the activity of TGF-B1 in mice. Biol Reprod. 2015;92(4):109.

78

Pollen AA, Bhaduri A, Andrews MG, et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell. 2019;176(4):743-756.e17.

79

Wang M, Zhang G, Zhang Y, et al. Fibrinogen alpha chain knockout promotes tumor growth and metastasis through integrin-AKT signaling pathway in lung cancer. Mol Cancer Res. 2020;18(7):943–954.

80

del Pilar Camacho Leal M, Sciortino M, Tornillo G, Colombo S, Defilippi P, Cabodi S. p130Cas/BCAR1 scaffold protein in tissue homeostasis and pathogenesis. Gene. 2015;562(1):1–7.

81

Inoue A, Kiyoshima T, Yoshizaki K, et al. Deletion of epithelial cell-specific p130Cas impairs the maturation stage of amelogenesis. Bone. 2022;154:116210.

82

Wisniewski L, French V, Lockwood N, Valdivia LE, Frankel P. P130Cas/bcar1 mediates zebrafish caudal vein plexus angiogenesis. Sci Rep. 2020;10(1):15589.

Genes & Diseases
Article number: 101009
Cite this article:
Xie S, Xie X, Tang J, et al. Cerebral furin deficiency causes hydrocephalus in mice. Genes & Diseases, 2024, 11(3): 101009. https://doi.org/10.1016/j.gendis.2023.04.037

120

Views

3

Downloads

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 13 December 2022
Revised: 20 April 2023
Accepted: 29 April 2023
Published: 08 July 2023
© 2023 The Authors.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return