Coronary microvascular dysfunction (CMD) is a clinical syndrome of myocardial ischemia caused by structural and/or functional abnormalities of pre-coronary arterioles and arterioles. While genetics and other factors play a role in CMD etiology, the key pathogenic mechanism remains unclear. Currently, the diagnostic procedure for CMD is still cumbersome, and there is a lack of effective targeted interventions. Single nucleotide polymorphisms (SNPs) offer promise in addressing these issues. SNPs, reflecting common genetic variations, have garnered extensive investigation across multiple diseases. Several SNPs associated with CMD have been discovered, and some have the potential to be therapeutic targets. Nevertheless, studies on CMD-related SNPs are relatively nascent and limited in number. In this review, we summarize the previously reported CMD-associated SNPs, delineate their pathophysiological mechanisms, and predict potentially important CMD sites by analyzing the SNPs linked to diseases sharing similar pathogenetic mechanisms and risk factors, such as coronary artery disease. We aim to explore reliable genetic markers implicated in CMD risk and prognosis, thereby providing a novel approach for early diagnosis and gene-targeted interventions of CMD in subsequent studies.
Del Buono MG, Montone RA, Camilli M, et al. Coronary microvascular dysfunction across the spectrum of cardiovascular diseases: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78(13):1352-1371.
Sara JD, Widmer RJ, Matsuzawa Y, Lennon RJ, Lerman LO, Lerman A. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8(11):1445-1453.
Hansen B, Holtzman JN, Juszczynski C, et al. Ischemia with no obstructive arteries (INOCA): a review of the prevalence, diagnosis and management. Curr Probl Cardiol. 2023;48(1):101420.
Taqueti VR, Solomon SD, Shah AM, et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39(10):840-849.
Ong P, Safdar B, Seitz A, Hubert A, Beltrame JF, Prescott E. Diagnosis of coronary microvascular dysfunction in the clinic. Cardiovasc Res. 2020;116(4):841-855.
Merz CB, Pepine CJ, Shimokawa H, Berry C. Treatment of coronary microvascular dysfunction. Cardiovasc Res. 2020;116(4):856-870.
Khera AV, Kathiresan S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat Rev Genet. 2017;18(6):331-344.
O’Sullivan JW, Raghavan S, Marquez-Luna C, et al. Polygenic risk scores for cardiovascular disease: a scientific statement from the American heart association. Circulation. 2022;146(8):e93-e118.
Kim S, Misra A. SNP genotyping: technologies and biomedical applications. Annu Rev Biomed Eng. 2007;9:289-320.
Chen SN, Ballantyne CM, Gotto Jr AM, Tan Y, Willerson JT, Marian AJ. A common PCSK9 haplotype, encompassing the E670G coding single nucleotide polymorphism, is a novel genetic marker for plasma low-density lipoprotein cholesterol levels and severity of coronary atherosclerosis. J Am Coll Cardiol. 2005;45(10):1611-1619.
Bodin L, Verstuyft C, Tregouet DA, et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood. 2005;106(1):135-140.
Cooper DN, Smith BA, Cooke HJ, Niemann S, Schmidtke J. An estimate of unique DNA sequence heterozygosity in the human genome. Hum Genet. 1985;69(3):201-205.
Dainis AM, Ashley EA. Cardiovascular precision medicine in the genomics era. JACC Basic Transl Sci. 2018;3(2):313-326.
Srinivasan S, Clements JA, Batra J. Single nucleotide polymorphisms in clinics: fantasy or reality for cancer? Crit Rev Clin Lab Sci. 2016;53(1):29-39.
Chaudhary R, Singh B, Kumar M, et al. Role of single nucleotide polymorphisms in pharmacogenomics and their association with human diseases. Drug Metab Rev. 2015;47(3):281-290.
Rankinen T, Sarzynski MA, Ghosh S, Bouchard C. Are there genetic paths common to obesity, cardiovascular disease outcomes, and cardiovascular risk factors? Circ Res. 2015;116(5):909-922.
Niccoli G, Scalone G, Lerman A, Crea F. Coronary microvascular obstruction in acute myocardial infarction. Eur Heart J. 2016;37(13):1024-1033.
Vancheri F, Longo G, Vancheri S, Henein M. Coronary microvascular dysfunction. J Clin Med. 2020;9(9):2880.
Masi S, Rizzoni D, Taddei S, et al. Assessment and pathophysiology of microvascular disease: recent progress and clinical implications. Eur Heart J. 2021;42(26):2590-2604.
Magenta A, Greco S, Capogrossi MC, Gaetano C, Martelli F. Nitric oxide, oxidative stress, and p66Shc interplay in diabetic endothelial dysfunction. BioMed Res Int. 2014;2014:193095.
Tsai SH, Lu G, Xu X, Ren Y, Hein TW, Kuo L. Enhanced endothelin-1/Rho-kinase signalling and coronary microvascular dysfunction in hypertensive myocardial hypertrophy. Cardiovasc Res. 2017;113(11):1329-1337.
Horton WB, Barrett EJ. Microvascular dysfunction in diabetes mellitus and cardiometabolic disease. Endocr Rev. 2021;42(1):29-55.
Volpe M, Gallo G. Hypertension, coronary artery disease and myocardial ischemic syndromes. Vasc Pharmacol. 2023;153:107230.
Sabe SA, Feng J, Sellke FW, Abid MR. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature. Am J Physiol Heart Circ Physiol. 2022;322(5):H819-H841.
Hinkel R, Howe A, Renner S, et al. Diabetes mellitus-induced microvascular destabilization in the myocardium. J Am Coll Cardiol. 2017;69(2):131-143.
Cosson E, Pham I, Valensi P, Pariès J, Attali JR, Nitenberg A. Impaired coronary endothelium-dependent vasodilation is associated with microalbuminuria in patients with type 2 diabetes and angiographically normal coronary arteries. Diabetes Care. 2006;29(1):107-112.
Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356(8):830-840.
Laurent S, Agabiti-Rosei C, Bruno RM, Rizzoni D. Microcirculation and macrocirculation in hypertension: a dangerous cross-link? Hypertension. 2022;79(3):479-490.
Padro T, Manfrini O, Bugiardini R, et al. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on ’coronary microvascular dysfunction in cardiovascular disease. Cardiovasc Res. 2020;116(4):741-755.
Mangiacapra F, De Bruyne B, Peace AJ, Melikian N, Wijns W, Barbato E. High cholesterol levels are associated with coronary microvascular dysfunction. J Cardiovasc Med. 2012;13(7):439-442.
Ford TJ, Corcoran D, Padmanabhan S, et al. Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction. Eur Heart J. 2020;41(34):3239-3252.
Pries AR, Badimon L, Bugiardini R, et al. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36(45):3134-3146.
Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35(17):1101-1111.
Palmer RM, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333(6174):664-666.
Severino P, D’Amato A, Prosperi S, et al. Potential role of eNOS genetic variants in ischemic heart disease susceptibility and clinical presentation. J Cardiovasc Dev Dis. 2021;8(9):116.
Fedele F, Mancone M, Chilian WM, et al. Role of genetic polymorphisms of ion channels in the pathophysiology of coronary microvascular dysfunction and ischemic heart disease. Basic Res Cardiol. 2013;108(6):387.
Fedele F, Severino P, Bruno N, et al. Role of ion channels in coronary microcirculation: a review of the literature. Future Cardiol. 2013;9(6):897-905.
Park WS, Han J, Kim N, Ko JH, Kim SJ, Earm YE. Activation of inward rectifier K+ channels by hypoxia in rabbit coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol. 2005;289(6):H2461-H2467.
Severino P, D’Amato A, Netti L, et al. Susceptibility to ischaemic heart disease: focusing on genetic variants for ATP-sensitive potassium channel beyond traditional risk factors. Eur J Prev Cardiol. 2021;28(13):1495-1500.
Dharma S, Sari NY, Parlautan A, et al. The 3q25 rs2305619 polymorphism is associated with coronary microvascular obstruction following primary angioplasty for acute ST-segment-elevation myocardial infarction. Circ Cardiovasc Interv. 2019;12(12):e008228.
Fracassi F, Niccoli G, Vetrugno V, et al. The 9p21 Rs 1333040 polymorphism is associated with coronary microvascular obstruction in ST-segment elevation myocardial infarction treated by primary angioplasty. Eur Heart J Acute Cardiovasc Care. 2019;8(8):703-707.
Halcox JPJ, Nour KRA, Zalos G, Quyyumi AA. Endogenous endothelin in human coronary vascular function: differential contribution of endothelin receptor types A and B. Hypertension. 2007;49(5):1134-1141.
Gupta RM, Hadaya J, Trehan A, et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell. 2017;170(3):522-533.e15.
Liang LL, Chen L, Zhou MY, et al. Genetic susceptibility of five tagSNPs in the endothelin-1 (EDN1) gene to coronary artery disease in a Chinese Han population. Biosci Rep. 2018;38(5):BSR20171320.
Bühler K, Ufer M, Müller-Marbach A, et al. Risk of coronary artery disease as influenced by variants of the human endothelin and endothelin-converting enzyme genes. Pharmacogenetics Genom. 2007;17(1):77-83.
Sheppard RJ, Schiffrin EL. Inhibition of the renin-angiotensin system for lowering coronary artery disease risk. Curr Opin Pharmacol. 2013;13(2):274-279.
Kruzliak P, Kovacova G, Pechanova O, Balogh S. Association between angiotensin II type 1 receptor polymorphism and sudden cardiac death in myocardial infarction. Dis Markers. 2013;35(5):287-293.
Alfakih K, Brown B, Lawrance RA, et al. Effect of a common X-linked angiotensin II type 2-receptor gene polymorphism (-1332 G/A) on the occurrence of premature myocardial infarction and stenotic atherosclerosis requiring revascularization. Atherosclerosis. 2007;195(1):e32-e38.
Lüscher TF. Endothelium-derived relaxing and contracting factors: potential role in coronary artery disease. Eur Heart J. 1989;10(9):847-857.
Gorchakova O, Koch W, von Beckerath N, Mehilli J, Schömig A, Kastrati A. Association of a genetic variant of endothelial nitric oxide synthase with the 1 year clinical outcome after coronary stent placement. Eur Heart J. 2003;24(9):820-827.
Emdin CA, Khera AV, Klarin D, et al. Phenotypic consequences of a genetic predisposition to enhanced nitric oxide signaling. Circulation. 2018;137(3):222-232.
Liu D, Jiang Z, Dai L, Zhang X, Yan C, Han Y. Association between the -786T>C 1polymorphism in the promoter region of endothelial nitric oxide synthase (eNOS) and risk of coronary artery disease: a systematic review and meta-analysis. Gene. 2014;545(1):175-183.
Chabowski DS, Hughes WE, Hockenberry JC, LoGiudice J, Beyer AM, Gutterman DD. Lipid phosphate phosphatase 3 maintains NO-mediated flow-mediated dilatation in human adipose resistance arterioles. J Physiol. 2023;601(3):469-481.
Guo H, Yu X, Liu Y, et al. SGLT2 inhibitor ameliorates endothelial dysfunction associated with the common ALDH2 alcohol flushing variant. Sci Transl Med. 2023;15(680):eabp9952.
Camici PG, d’Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol. 2015;12(1):48-62.
Matic LP, Rykaczewska U, Razuvaev A, et al. Phenotypic modulation of smooth muscle cells in atherosclerosis is associated with downregulation of LMOD1, SYNPO2, PDLIM7, PLN, and SYNM. Arterioscler Thromb Vasc Biol. 2016;36(9):1947-1961.
Howson JMM, Zhao W, Barnes DR, et al. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat Genet. 2017;49(7):1113-1119.
Grech ED. Pathophysiology and investigation of coronary artery disease. BMJ. 2003;326(7397):1027-1030.
Khuddus MA, Pepine CJ, Handberg EM, et al. An intravascular ultrasound analysis in women experiencing chest pain in the absence of obstructive coronary artery disease: a substudy from the National Heart, Lung and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). J Intervent Cardiol. 2010;23(6):511-519.
Heusch G, Skyschally A, Kleinbongard P. Coronary microembolization and microvascular dysfunction. Int J Cardiol. 2018;258:17-23.
Kleinbongard P, Konorza T, Böse D, et al. Lessons from human coronary aspirate. J Mol Cell Cardiol. 2012;52(4):890-896.
Björkegren JLM, Lusis AJ. Atherosclerosis: recent developments. Cell. 2022;185(10):1630-1645.
Lutgens E, Lievens D, Beckers L, Donners M, Daemen M. CD40 and its ligand in atherosclerosis. Trends Cardiovasc Med. 2007;17(4):118-123.
Sultan CS, Weitnauer M, Turinsky M, et al. Functional association of a CD40 gene single-nucleotide polymorphism with the pathogenesis of coronary heart disease. Cardiovasc Res. 2020;116(6):1214-1225.
Li Y, Yan H, Guo J, et al. Down-regulated RGS5 by genetic variants impairs endothelial cell function and contributes to coronary artery disease. Cardiovasc Res. 2021;117(1):240-255.
Turner AW, Martinuk A, Silva A, et al. Functional analysis of a novel genome-wide association study signal in SMAD3 that confers protection from coronary artery disease. Arterioscler Thromb Vasc Biol. 2016;36(5):972-983.
Nikpay M, Goel A, Won HH, et al. A comprehensive 1, 000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121-1130.
Aherrahrou R, Guo L, Nagraj VP, et al. Genetic regulation of atherosclerosis-relevant phenotypes in human vascular smooth muscle cells. Circ Res. 2020;127(12):1552-1565.
Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460(7256):705-710.
Hall IF, Climent M, Viviani Anselmi C, et al. rs41291957 controls miR-143 and miR-145 expression and impacts coronary artery disease risk. EMBO Mol Med. 2021;13(10):e14060.
Wang L, Zheng J, Bai X, et al. ADAMTS-7 mediates vascular smooth muscle cell migration and neointima formation in balloon-injured rat arteries. Circ Res. 2009;104(5):688-698.
Pu X, Xiao Q, Kiechl S, et al. ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet. 2013;92(3):366-374.
Reilly MP, Li M, He J, et al. Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies. Lancet. 2011;377(9763):383-392.
Dou H, Kotini A, Liu W, et al. Oxidized phospholipids promote NETosis and arterial thrombosis in LNK(SH2B3) deficiency. Circulation. 2021;144(24):1940-1954.
Shi GL, Cai XX, Su YM, et al. Interleukin-10 promotor-592A/C polymorphism is associated with slow coronary flow in Han Chinese. Int J Clin Exp Pathol. 2015;8(4):4091-4098.
Zhang M, Bai Y, Wang Y, et al. Cumulative evidence for associations between genetic variants in interleukin 6 receptor gene and human diseases and phenotypes. Front Immunol. 2022;13:860703.
Wirtwein M, Melander O, Sjőgren M, et al. Relationship between selected DNA polymorphisms and coronary artery disease complications. Int J Cardiol. 2017;228:814-820.
Mehta NN, Li M, William D, et al. The novel atherosclerosis locus at 10q11 regulates plasma CXCL12 levels. Eur Heart J. 2011;32(8):963-971.
Guo L, Akahori H, Harari E, et al. CD163+ macrophages promote angiogenesis and vascular permeability accompanied by inflammation in atherosclerosis. J Clin Invest. 2018;128(3):1106-1124.
Wågsäter D, Zhu C, Björck HM, Eriksson P. Effects of PDGF-C and PDGF-D on monocyte migration and MMP-2 and MMP-9 expression. Atherosclerosis. 2009;202(2):415-423.
Zhou J, Huang Y, Huang RS, et al. A case-control study provides evidence of association for a common SNP rs974819 in PDGFD to coronary heart disease and suggests a sex-dependent effect. Thromb Res. 2012;130(4):602-606.
Nyquist PA, Winkler CA, McKenzie LM, Yanek LR, Becker LC, Becker DM. Single nucleotide polymorphisms in monocyte chemoattractant protein-1 and its receptor act synergistically to increase the risk of carotid atherosclerosis. Cerebrovasc Dis. 2009;28(2):124-130.
Adameova A, Dhalla NS. Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev. 2014;19(1):25-33.
Love KM, Barrett EJ, Malin SK, Reusch JEB, Regensteiner JG, Liu Z. Diabetes pathogenesis and management: the endothelium comes of age. J Mol Cell Biol. 2021;13(7):500-512.
Porter KE, Riches K. The vascular smooth muscle cell: a therapeutic target in Type 2 diabetes? Clin Sci. 2013;125(4):167-182.
Laidlaw KME, Livingstone R, Al-Tobi M, Bryant NJ, Gould GW. SNARE phosphorylation: a control mechanism for insulin-stimulated glucose transport and other regulated exocytic events. Biochem Soc Trans. 2017;45(6):1271-1277.
Guerini FR, Ripamonti E, Costa AS, et al. The Syntaxin-1A gene single nucleotide polymorphism rs4717806 associates with the risk of ischemic heart disease. Medicine. 2019;98(24):e15846.
Watts SW, Dorrance AM, Penfold ME, et al. Chemerin connects fat to arterial contraction. Arterioscler Thromb Vasc Biol. 2013;33(6):1320-1328.
Perumalsamy S, Wan Ahmad WA, Zaman Huri H. Single nucleotide polymorphism rs17173608 in the chemerin encoding gene: is it a predictor of insulin resistance and severity of coronary artery disease in non-obese type 2 diabetes? Healthcare. 2021;9(6):623.
Amini S, Javanmardi M, Mokarizadeh A, et al. Association of HaeIII single nucleotide polymorphisms in the SLC2A1 gene with risk of diabetic nephropathy; evidence from Kurdish patients with type 2 diabetes mellitus. QJM. 2016;109(6):399-404.
Lee DH, Won GW, Lee YH, et al. Polymorphism in the HaeIII single nucleotide polymorphism of the SLC2A1 gene and cardiovascular disease in the early type 2 diabetes mellitus. Diabetes Vasc Dis Res. 2021;18(5):14791641211041225.
Allu PKR, Kiranmayi M, Mukherjee SD, et al. Functional Gly297Ser variant of the physiological dysglycemic peptide pancreastatin is a novel risk factor for cardiometabolic disorders. Diabetes. 2022;71(3):538-553.
Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111(25):3481-3488.
Wu MD, Moccetti F, Brown E, et al. Lipoprotein apheresis acutely reverses coronary microvascular dysfunction in patients with severe hypercholesterolemia. JACC Cardiovasc Imag. 2019;12(8):1430-1440.
Kleber ME, Renner W, Grammer TB, et al. Association of the single nucleotide polymorphism rs599839 in the vicinity of the sortilin 1 gene with LDL and triglyceride metabolism, coronary heart disease and myocardial infarction. The Ludwigshafen Risk and Cardiovascular Health Study. Atherosclerosis. 2010;209(2):492-497.
Laurila PP, Soronen J, Kooijman S, et al. USF1 deficiency activates brown adipose tissue and improves cardiometabolic health. Sci Transl Med. 2016;8(323):323ra13.
Williams DL, Connelly MA, Temel RE, et al. Scavenger receptor BI and cholesterol trafficking. Curr Opin Lipidol. 1999;10(4):329-339.
Ayhan H, Gormus U, Isbir S, Yilmaz SG, Isbir T. SCARB1 gene polymorphisms and HDL subfractions in coronary artery disease. In Vivo. 2017;31(5):873-876.
Webb TR, Erdmann J, Stirrups KE, et al. Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J Am Coll Cardiol. 2017;69(7):823-836.
Burke AC, Dron JS, Hegele RA, Huff MW. PCSK9: regulation and target for drug development for dyslipidemia. Annu Rev Pharmacol Toxicol. 2017;57:223-244.
Guella I, Asselta R, Ardissino D, et al. Effects of PCSK9 genetic variants on plasma LDL cholesterol levels and risk of premature myocardial infarction in the Italian population. J Lipid Res. 2010;51(11):3342-3349.
Hopewell JC, Malik R, Valdés-Márquez E, Worrall BB, Collins R, Isgc MCOT. Differential effects of PCSK9 variants on risk of coronary disease and ischaemic stroke. Eur Heart J. 2018;39(5):354-359.
Roberts R, Chang CC, Hadley T. Genetic risk stratification: a paradigm shift in prevention of coronary artery disease. JACC Basic Transl Sci. 2021;6(3):287-304.
Wang YJ, Pan Y. Angiotensinogen gene M235T polymorphism and risk of coronary artery disease: a meta-analysis. Mol Med Rep. 2012;6(4):884-888.
Joshi PH, Xu H, LeStrange R, et al. The M235T single nucleotide polymorphism in the angiotensinogen gene is associated with coronary artery calcium in patients with a family history of coronary artery disease. Atherosclerosis. 2013;226(2):433-439.
Schneider S, Koch W, Hoppmann P, et al. Association of Toll-like receptor 4 polymorphism with age-dependent systolic blood pressure increase in patients with coronary artery disease. Immun Ageing. 2015;12:4.
Taghvaei S, Saremi L, Babaniamansour S. Computational analysis of Gly482Ser single-nucleotide polymorphism in PPARGC1A gene associated with CAD, NAFLD, T2DM, obesity, hypertension, and metabolic diseases. PPAR Res. 2021;2021:5544233.
Rehman K, Jabeen K, Awan FR, Hussain M, Saddique MA, Akash MSH. Biochemical investigation of rs1801282 variations in PPAR-γ gene and its correlation with risk factors of diabetes mellitus in coronary artery disease. Clin Exp Pharmacol Physiol. 2020;47(9):1517-1529.
Penz P, Bucova M, Lietava J, et al. MCP-1-2518 A/G gene polymorphism is associated with blood pressure in ischemic heart disease asymptomatic subjects. Bratisl Lek Listy. 2010;111(8):420-425.
Johnson BD, Shaw LJ, Pepine CJ, et al. Persistent chest pain predicts cardiovascular events in women without obstructive coronary artery disease: results from the NIH-NHLBI-sponsored Women’s Ischaemia Syndrome Evaluation (WISE) study. Eur Heart J. 2006;27(12):1408-1415.
Crea F. Hot topics in ischaemic heart disease: polygenic risk scores, coronary microvascular dysfunction, myocardial injury, and diagnostic role of imaging. Eur Heart J. 2023;44(2):73-76.