PDF (24.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Open Access

Response of drainage to tectonics and PS-InSAR derived deformation study in Bilaspur, northwestern Himalaya, India

Moulishree Joshia()Girish Ch Kothyarib()Kapil MalikcAjay Kumar Taloord
Department of Geology Kumaun University, Nainital, India
Institute of Seismological Research, Gandhinagar, Gujarat, India
IIT Indian School of Mines, Dhanbad, India
Department of Remote Sensing and GIS, University of Jammu, Jammu, India
Show Author Information

Abstract

The study of drainage patterns in tectonically active regions is conducive to the prediction of regional geomorphology. Subtle subsurface changes can be detected by drainage conditions and manifested in the form of drainage anomalies. The Satluj valley of Bilaspur, which is traversed by numerous faults in northwest Himalayan region, was selected to analyze the effect of active tectonics on drainage evolution. With the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique, SENTINEL-1A data were used to estimate the active surface deformation between September 2015 and December 2020. The results show that the region between Barasar Thrust (BrT) and Main Central Thrust (MCT) is undergoing deformation of ±12 mm/yr. The Stream Power Incision Model (SPIM) was used to predict deformation patterns. To validate the tectonic activity generated by the drainage network, seismic b-values were calculated, indicating the accumulating stresses. This study shows the importance of drainage anomalies in tectonically active areas. When used in close combination with other seismotectonic parameters, drainage anomalies can be effective in delineating tectonically active regions.

References

[1]

J.N. Malik, C. Mohanty, Active tectonic influence on the evolution of drainage and landscape, geomorphic signatures from frontal and hinterland areas along the Northwestern Himalaya, India, J. Asian Earth Sci. 29 (5–6) (2007) 604–618.

[2]

N. Joshi, G.C. Kothyari, C.C. Pant, Drainage conformation and transient response of river system in thrust segmentation of Northwest Himachal Himalaya, India, Quat. Int. (2021) 575–576, https://doi.org/10.1016/j.quaint.2020.05.024.

[3]

V. Jain, R. Sinha, Response of active tectonics on the alluvial Bagmati River, Himalayan foreland basin, Eastern India, Geomorphology 70 (2005) 339–356.

[4]

A.W. Burnett, S.A. Schuum, Alluvial response to neotectonic deformation in Louisiana and Mississippi, Science 222 (1983) 49–50.

[5]

S. Rhea, Geomorphic observations of rivers in the Oregon coast range from a regional reconnaissance perspective, Geomorphology 6 (1993) 135–150.

[6]

R.T. Marple, P. Talwani, Evidences for a buried fault system in the coastal plain of the Carolinas and Virginia-Implications for neotectonics in the Southeastern United States, Geol. Soc. Am. Bull. 112 (2000) 200–220.

[7]

G.C. Kothyari, Morphometric analysis of tectonically active pindar and saryu river basins: central Kumaun Himalaya, Z. Geomorphol. (2015), https://doi.org/10.1127/zfg/2014/0162.

[8]

G.C. Kothyari, K. Luirei, Late quaternary tectonic landforms and fluvial aggradation in the saryu river valley: central Kumaun Himalaya, Geomorphology 268 (2016) 159–176.

[9]
G.C. Kothyari, A.D. Shukla, N. Juyal, Reconstruction of late quaternary climate and seismicity using fluvial landforms in pindar river valley central Himalaya, Uttarakhand, India, Quat. Int. 443 (2017a) 248–264. http://dxdoiorg/101016/jquaint201606001.
[10]

G.C. Kothyari, R.S. Kandregula, K. Luirei, Morphotectonic records of neotectonic activity in the vicinity of north almora thrust zone, central Kumaun Himalaya, Geomorphology 285 (2017b) 272–286, https://doi.org/10.1016/j.geomorph.2017.02.021.

[11]

G.C. Kothyari, N. Joshi, A.K. Taloor, R.S. Kandregula, B.S. Kotlia, C.C. Pant, R.K. Singh, Landscape evolution and deduction of surface deformation in the Soan Dun, NW Himalaya, India, Quat. Int. 507 (2019) 302–323.

[12]

S.A. Schuum, J.F. Dumont, J.M. Holbrook, Active Tectonics and Alluvial Rivers, Cambridge University Press, 2002.

[13]

M. Goldsworthy, J. Jackson, Active normal fault evolution in Greece revealed by geomorphology and drainage pattern, Jour. Geol. Soc. London 157 (2000) 967–981.

[14]

G.C. Kothyari, B.K. Rastogi, P. Morthekai, R.K. Dumka, R.S. Kandregula, Active segmentation and assessment of the tectonically active south Wagad fault in Kutch, western peninsular India, Geomorphology 253 (2016a) 491–507.

[15]

G.C. Kothyari, B.S. Kotlia, R. Talukdar, C.C. Pant, M. Joshi, Evidences of neotectonic activity along goriganga river, higher central Kumaun Himalaya, India, Geol. J. 1–24 (2020a), https://doi.org/10.1002/gj.3791.

[16]

R. Raj, Strike slip faulting inferred from offsetting of drainage: lower Narmada basin, Western India. Jour, Earth Sy. Sci. 116 (5) (2007) 413–421.

[17]
W.B. Bull, L.D. Mc Fadden, Tectonic geomorphology north and south of garlock fault California, in: D.O. Doehring (Ed.), Geomorphology in Arid Regions, Proceedings of 8th Annual Geomorphology Symposium, University of New York, Binghamton, 1977, pp. 115–137.
[18]

L. Seeber, V. Gornitz, River profiles along the Himalayan arc as indicators of active tectonics, Tectonophysics 92 (1983) 335–367.

[19]
D.I. Gregory, S.A. Schumm, The effect of active tectonics on alluvial river morphology, in: K. Richard (Ed.), River Channels: Environments and Processes, Basil Blackwell, Oxford, 1987, pp. 48–68.
[20]

A. Demoulin, Testing the tectonic significance of some parameters of longitudinal river Profiles: the case of the Ardenne (Belgium, NW Europe), Geomorphology 24 (1998) 189–208.

[21]

J.P. Mc Calpin, Paleoseismology, Academic Press, New York, 1996, pp. 1–588.

[22]

B. Champel, B.P. Van der, J.L. Mugnier, P. Leturmy, Growth and lateral propagation of fault-related folds in the Siwaliks of western Nepal: rates, mechanisms, and geomorphic signature, J. Geophys. Res. C Oceans Atmos. 107 (2111) (2001) 2–18.

[23]

R. Riquelmea, J. Martinod, G. Herail, J. Darrozesa, R. Charrierb, A geomorphological approach to determining the Neogene to Recent tectonic deformation in the Coastal Cordillera of northern Chile (Atacama), Tectonophysics 361 (2003) 255–275.

[24]

P.F. Friend, N.E. Jones, S.J. Vincent, Drainage Evolution in Active Mountain Belts: Extrapolation Backwards from Present-Day Himalayan River Patterns vol. 28, Spl. Publ. Int. Assoc. Sedimentol., 1999, pp. 305–313.

[25]

S. Gupta, Himalayan drainage patterns and the origin of fluvial megafans in the Ganges foreland basin, Geol. 25 (1997) 11–14.

[26]

B. Delcaillau, J.M. Carozza, E. Laville, Recent fold growth and drainage development: the Janauri and Chandigarh anticlines in the Siwalik foothills, Northwest India, Geomorphology 76 (2006) 241–256.

[27]
D.W. Burbank, R.S. Anderson, Tectonic Geomorphology, Blackwell Science, 2001, pp. 1–274.
[28]

J. Van der Woerd, D. Xu, H. Li, P. Tapponnier, B. Meyer, F.J. Ryerson, A.S. Meriaux, Z. Xu, Rapid active thrusting along the northwestern range front of the Tanghe Nan Shan (western Ganshu, China), J. Geophys. Res. C Oceans Atmos. 106 (2001) 30475–30504.

[29]

B. Bookhagen, R.C. Thiede, M.R. Strecker, Late Quaternary intensified monsoon phases control landscape evolution in the northwest Himalaya, Geology 33 (2) (2005) 149–152.

[30]

B. Bookhagen, D.W. Burbank, Topography, relief, and TRMM-derived rainfall variations along the Himalaya, Geophys. Res. Lett. 33 (8) (2006).

[31]

W.M. Behr, D.H. Rood, K.E. Fletcher, N. Guzman, R. Finkel, T.C. Hanks, K.W. Hudnut, K.J. Kendrick, J.P. Platt, W.D. Sharp, R.J. Weldon, J.D. Yule, Uncertainties in slip-rate estimates for the mission creek strand of the southern san andreas fault at biskra palms oasis, southern California, Geol. Soc. Am. Bull. 122 (2010) 1360–1377.

[32]

E. Kirby, K.X. Whipple, Expression of active tectonics in erosional landscapes, J. Struct. Geol. 44 (2012) 54–75.

[33]

J. Lavé, J.P. Avouac, Active folding of fluvial terraces across the siwaliks hills, Himalayas of central Nepal, J. Geophys. Res. Solid Earth 105 (B3) (2000) 5735–5770.

[34]

O. Zielke, J.R. Arrowsmith, L. Grant-Ludwig, S.O. Akçiz, Slip in the 1857 and earlier large earthquakes along the carrizo plain, san andreas fault, Science 80 (327) (2010) 1119–1122.

[35]

G.C. Kothyari, R. Kandregula, K. Luirei, Response: discussion of ‘morphotectonic records of neotectonic activity in the vicinity of north almora thrust zone, central Kumaun Himalaya, Geomorphology 301 (2018) 153–166.

[36]

S. Dong, P. Zhang, H. Zhang, W. Zheng, H. Chen, Drainage responses to the activity of the langshan range-front fault and tectonic implications, J. Earth Sci. 29 (1) (2018) 193–209.

[37]

Z. Han, X. Li, N. Wang, G. Chen, X. Wang, H. Lu, Application of river longitudinal profile morphometrics to reveal the uplift of lushan mountain, Acta Geologica Sinica- English Edition 91 (5) (2017) 1644–1652.

[38]

K.X. Whipple, G.E. Tucker, Dynamics of the stream-power river incision model, Implications for height limits of mountain ranges, landscape response timescales, and research needs, J. Geophys. Res. 104 (1999) 17,661-17,674.

[39]

K.X. Whipple, Bedrock rivers and the geomorphology of active orogens, Annu. Rev. Earth Planet Sci. 32 (2004) 151–185.

[40]

G.C. Kothyari, B.K. Rastogi, P. Morthekai, R.K. Dumka, Landform development in a zone of active Gedi fault, eastern Kutch Rift Basin, western India, Tectonophysics 670 (2016) 115–126.

[41]

J.T. Perron, L. Royden, An integral approach to bedrock river profile analysis, Earth Surf. Process. Landforms 38 (6) (2013) 570–576.

[42]

L. Royden, J.T. Perron, Solutions of the stream power equation and application to the evolution of river longitudinal profiles, Journal of Geophysical Research Earth Surf. v. 118 (2) (2012) 497–518.

[43]

S. Sonam, V. Jain, Geomorphic effectiveness of a long profile shape and the role of inherent geological controls in the Himalayan hinterland area of the Ganga River basin, India, Geomorphology 304 (2017) 15–29, https://doi.org/10.1016/j.geomorph.2017.12.022.

[44]

B.S. Kotlia, J. Sanwal, S.K. Bhattacharya, Climatic record between ca 31 and 22 ka BP in east-central Uttarakhand Himalaya, India, Himal. Geol. 29 (1) (2008) 25–33.

[45]

R. Talukdar, G.C. Kothyari, C.C. Pant, Evaluation of neotectonic variability along major Himalayan thrusts within the Kali River basin using geomorphic markers, Central Kumaun Himalaya, India, Geol. J. (2020) 1–24.

[46]
K.S. Valdiya, Geology of Kumaun Lesser Himalaya, Wadia Institute of Himalayan Geology, 1980, p. 287.
[47]

K.S. Valdiya, The main boundary thrust zone of the Himalaya, India, Annals of Tectonics 6 (1992) 54–84.

[48]

K.S. Valdiya, Reactivation of Himalayan frontal fault, implications, Curr. Sci. (2003) 1031–1040.

[49]

K.S. Valdiya, B.S. Kotlia, Fluvial geomorphic evidence for Late Quaternary reactivation of a synclinally folded nappe in Kumaun Lesser Himalaya, J. Geol. Soc. India 58 (4) (2001) 303–317.

[50]

R. Bilham, V.K. Gaur, P. Molnar, Himalayan seismic hazard, Science 293 (2001) 1442–1444.

[51]

P. Banerjee, R. Bürgmann, Convergence across the northwest Himalaya from GPS measurements, Geophys. Res. Lett. 29 (2002) 30–34.

[52]

S. Dey, R.K. Kaushal, V. Jain, Spatiotemporal variability of Neotectonic activity along the Southern Himalayan front: a geomorphic perspective, J. Geodyn. 129 (2019) 237–246.

[53]

R. Vassallo, J.L. Mugnier, V. Vignon, et al., Distribution of the late-quaternary deformation in northwestern Himalaya, Earth Planet Sci. Lett. 411 (2015) 241–252.

[54]

V.C. Thakur, M. Joshi, D. Sahoo, N. Suresh, R. Jayangondapermal, A. Singh, Partitioning of convergence in Northwest Sub-Himalaya, estimation of late Quaternary uplift and convergence rates across the Kangra reentrant, North India, Int. J. Earth Sci. 103 (4) (2014) 1037–1056.

[55]
J.-L. Mugnier, P. Huyghe, P. Leturmy, F. Jouanne, Episodicity and rates of thrust-sheet motion in the Himalayas (western Nepal), in: K.R. McClay (Ed.), Thrust Tectonics and Hydrocarbon Systems: AAPG Memoir 82, 2004, pp. 91–114.
[56]

P.W. Burgess, A. Yin, C.S. Dubey, Z. Shen, T.K. Kelty, Holocene shortening across the main frontal thrust zone in the eastern Himalaya, Earth Planet Sci. Lett. 357–358 (2012) 152–167.

[57]

M. Mukul, M. Jaiswal, A.K. Singhvi, Timing of recent out-of-sequence active deformation in the frontal Himalayan wedge: insights from the Darjiling sub-Himalaya, India, Geology 35 (2007) 999–1002.

[58]

B. Kundu, R.K. Yadav, B.S. Bali, S. Chowdhury, V.K. Gahalaut, Oblique convergence and slip partitioning the NW Himalaya, Implications from GPS measurements, Tectonics 33 (2014) 1–12.

[59]

V.L. Stevens, J.P. Avouac, Millenary Mw>9.0 earthquakes required by geodetic strain in the Himalaya, Geophys. Res. Lett. 43 (2015) 1118–1123.

[60]

T. Ader, J.P. Avouac, J. Liu-Zeng, H. Lyon-Caen, L. Bollinger, J. Galetzka, J. Genrich, M. Thomas, K. Chanard, S.N. Sapkota, S. Rajaure, Convergence rate across the Nepal Himalaya and interseismic coupling on the main himalayan thrust: implications for seismic hazard, J. Geophys. Res. Solid Earth 117 (B4) (2012), https://doi.org/10.1029/2011JB009071.

[61]

H.A. Zebker, P.A. Rosen, R.M. Goldstein, A. Gabriel, C.L. Werner, On the derivation of coseismic displacement fields using differential radar interferometry: the Landers earthquake, J. Geophys. Res. 99 (1994) 19617–19634.

[62]

D. Massonnet, K.L. Feigl, Radar interferometry and its application to changes in the Earth's surface, Rev. Geophys. 36 (4) (1998) 441–500.

[63]

C.P. Chang, K.S. Chen, C.T. Wang, J.Y. Yen, T.Y. Chang, C.W. Lin, Application of space borne radar interferometry on crustal deformations in taiwan: a perspective from the nature of events, Terr. Atmos. Ocean Sci. 15 (3) (2004) 523–543.

[64]

A. Lakhote, M.G. Thakkar, R.S. Kandregula, C. Jani, G.C. Kothyari, G. Chauhan, S. Bhandari, Estimation of active surface deformation in the eastern Kachchh region, western India: application of multi-sensor DInSAR technique, Quat. Int. (2020), https://doi.org/10.1016/j.quaint.2020.07.010.

[65]

R.S. Kandregula, G.C. Kothyari, K.V. Swamy, A.K. Taloor, A. Lakhote, G. Chauhan, M.G. Thakkar, V. Pathak, Estimation of regional surface deformation post the 2001 bhuj earthquake in the Kachchh region, western India using RADAR interferometry, Geocarto Int. (2021). TGEI-2020-0439.

[66]

A.K. Taloor, G.C. Kothyari, A. Goswami, Remote sensing and GIS applications in quaternary science, Quat. Int. (2021), https://doi.org/10.1016/j.quaint.2021.02.

[67]

G.C. Kothyari, N. Joshi, A. Taloor, K. Malik, R. Dumka, S.P. Sati, Y.B. Sundariyal, Reconstruction of active surface deformation in the Rishi Ganga basin, Central Himalaya using PSInSAR: A feedback towards understanding the 7th February 2021 Flash flood, Adv. Space Res (2022), https://doi.org/10.1016/j.asr.2021.07.002.

[68]

A. Yokha, C.P. Chang, P.K. Goswami, J.Y. Yen, S.I. Lee, Surface deformation in the Himalaya and adjoining piedmont zone of the Ganga Plain, Utarakhand, India by different radar interferometric technique, J. Asian Earth Sci. 106 (2015) 119–129.

[69]

H.A. Zebker, R.M. Goldstein, Topographic mapping from interferometry synthetic aperture radar observations, J. Geophys. Res. 91 (B5) (1986) 4993–4999.

[70]

A.K. Das, P. Bhaumik, S.S. Bisht, B. Agarwal, Seismic mapping of photogeomorphic anomalies observed in the area between Hamirpur and Sundernagar, Himachal Pradesh, Himalayan foothills with an emphasis on hydrocarbon prospectivity, Himal. Geol. 22 (2001) 61–82.

[71]

S. Srikantia, O.N. Bhargava, Geology of Himachal Pradesh, Geol. Soc. Ind. (1998) 1–406.

[72]

K.N. Khattri, K. Rai, A.K. Jain, H. Sinvhal, V.K. Gaur, R.S. Mithal, The Kinnaur earthquake Himachal Pradesh India of 19 january 1975, Tectonophysics 49 (1978) 1–21.

[73]

K. Wallace, R.F. Bilham, F. Blume, V.K. Gaur, V. Gahalaut, Surface deformation in the region of the 1905 Kangra Mw = 7.8 earthquake in the period 1846–2001, Geophys. Res. Lett. 321 (15) (2005).

[74]

M. Joshi, G.C. Kothyari, Assessment of tectonic activity in a seismically locked segment of Himachal Himalaya, Int. Jour. Remote Sen. 31 (3) (2010) 681–689.

[75]

B. Phartiyal, G.C. Kothyari, Impact of neotectonics on drainage network evolution reconstructed from morphometric indices, case study from NW Indian Himalaya, Z. Geomorphol. 56 (1) (2012) 121–140.

[76]

G.C. Kothyari, N. Joshi, M. Thakur, A.K. Taloor, V. Pathak, Reanalyzing the geomorphic developments along tectonically active Soan Thrust, NW Himalaya, India, Quaternary Science Advances (2021) 100017.

[77]

B. Gutenberg, C.F. Richter, Frequency of earthquakes in California, Bull. Seismol. Soc. Am. 34 (1944) 185–188.

[78]

K. Aki, Maximum liklelihood estimate of b in the formula logN=a-bM and its confidence limit, Bull. Earth. Res. Inst. Univ. Tokyo 43 (1965) 237–239.

[79]

T. Utsu, A stastistical study of the occurrence of aftershock, Geophys. Mag. 30 (1961) 521–605.

[80]

Y.C. Chen, Q. Sung, K.Y. Cheng, Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis, Geomorphology 56 (2003) 109–137.

[81]

S.D. Willett, S.W. McCoy, J.T. Perron, L. Goren, C.Y. Chen, Dynamic reorganization of river basins, Science 343 (6175) (2014) 1248765.

[82]

A.D. Howard, Long profile development of bedrock channels, Interaction of weathering, mass wasting, bed erosion, and sediment transport, Geophysical Monograph American Geophysical Union 107 (1998) 297–319.

[83]

A.D. Howard, G. Kirby, Channel changes in badlands, Geol. Soc. Am. Bull. 94 (1983) 739–752.

[84]

D. Lague, The stream power river incision model, evidence, theory and beyond, Earth Surf. Process. Landforms 39 (1) (2013) 38–61.

[85]

L. Sklar, W.E. Dietrich, River longitudinal profiles and bedrock incision models, Stream power and the influence of sediment supply, Rivers over rock Fluvial Process. bedrock channels 107 (1998) 237–260.

[86]

N.P. Snyder, K.X. Whipple, G.E. Tucker, D.J. Merrittis, Landscape response to tectonic forcing, Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California, GSA Bulletin 112 (8) (2000) 1250–1263.

[87]

K.X. Whipple, G.E. Tucker, Implications of sediment-flux-dependent river incision models for landscape evolution, J. Geophys. Res. Solid Earth 107 (B2) (2002). ETG-3.

[88]

J.J. Flint, Stream gradient as a function of order, magnitude, and discharge, Water Resour. Res. 10 (1974) 969–973.

[89]

C. Wobus, K.X. Whipple, E. Kirby, N. Snyder, J. Johnson, K. Spyropolou, B. Crosby, D. Sheehan, S.D. Willett, Tectonics from topography, Procedures, promise, and pitfalls, Spec. Pap. Geol. Soc. Am. 398 (2006) 55.

[90]
C.A. Keller, N. Pinter, Active Tectonics: Earthquake, Uplift and Landscape, Prentice-Hall, New Jersey, 2002.
[91]
J. Hack, Drainage adjustment in the appalachians, in: M. Morisawa (Ed.), Fluvial Geomorphology, George Allen and Unwin, London, 1973, pp. 51–69.
[92]

J.E. Muller, An introduction to the hydraulic and topographic sinuosity indices, Ann. Assoc. Am. Geogr. 58 (1968) 371–385.

[93]

A. Ferretti, C. Prati, F. Rocca, Permanent Scatterers in SAR interferometry, IEEE Trans. Geosci. Rem. Sens. 39 (1) (2001) 8–20.

[94]
D. Perissin, SARPROZ Software Manual, 2015 from, https://www.sarproz.com/software-manual. (Accessed 9 November 2015).
[95]

P.A. Rosen, S. Hensley, H.A. Zebker, F.H. Webb, E.J. Fielding, Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR-C radar interferometry, Geophys. Res. Lett. 101 (E10) (1996) 23109–23125.

[96]
R.F. Hanssen, Radar Interferometry: Data Interpretation and Error Analysis, Kluwer Academic, 2001. ISBN: 9780792369455.
[97]

A.S. Virk, A. Singh, S.K. Mittal, Monitoring and analysis of displacement using insar techniques for gulaba landslide site, J. Eng. Sci. Technol. 14 (3) (2019) 1558–1571.

[98]

N. Joshi, G.C. Kothyari, C.C. Pant, Drainage conformation and transient response of river system in thrust segmentation of Northwest Himachal Himalaya, India, Quat. Int. 575 (2020) 37–50.

[99]

N. Juyal, Y. Sundriyal, N. Rana, S. Chaudhary, A.K. Singhvi, Late quaternary fluvial aggradation and incision in the monsoon-dominated alaknanda valley central Himalaya, Uttarakhand, India, J. Quat. Sci. 25 (2010) 1293–1304.

[100]

M. Zgorzelski, Orographic barrier of the great Himalayas, Miscellanea Geographica 11 (1) (2004) 71–74.

[101]

S. Ouchi, Response of alluvial rivers to slow active tectonics movement, Geol. Soc. Am. Bull. 96 (1985) 504–515.

[102]

M. Joshi, G.C. Kothyari, P. Pant, Tectonic geomorphology of a part of Bilaspur region, SW Himachal Pradesh, J. Geol. Soc. India 69 (5) (2007) 909–915.

[103]
M. Ishimoto, K. Iida, Observations of Earthquakes Registered with the Microseismograph Constructed Recently vol. 17, Bull. Earthquake Res. Inst., Univ.Tokyo, 1939, pp. 443–478.
[104]

C. Frolich, S. Davis, Teleseismic b-values: or much ado about 1.0, J. Geophys. Res. C Oceans Atmos. 98 (1993) 631–644.

[105]

S.R. McNutt, Volcanic seismology, Annu. Rev. Earth Planet Sci. 33 (2005) 461–491.

[106]

C.H. Scholz, The frequency–magnitude relation of micro-fracturing in rock and its relation to earthquakes, Bull. Seismol. Soc. Am. 58 (1968) 399–415.

[107]

D. Schorlemmer, S. Wiemer, Microseismicity data forecast rupture area, Nature 434 (2005) 1086.

[108]

D. Schorlemmer, S. Wiemer, M. Wyss, Variations in earthquake-size distribution across different stress regimes, Nature 437 (2005) 539–542.

[109]

M. Wyss, Towards a physical understanding of the earthquake frequency Distribution, Geophys. J. Roy. Astron. Soc. 31 (1973) 341–359.

[110]

S. Wiemer, M. Wyss, Mapping the frequency–magnitude distribution in asperities: an improved technique to calculate recurrence times? J. Geophys. Res. C Oceans Atmos. 102 (1997) 15115–15128.

[111]

P.M. Powers, R.J. Lillie, R.S. Yeats, Structure and shortening of the Kangra and dehra dun reentrants, sub-himalaya, India, Geol. Soc. Am. Bull. 110 (8) (1998) 1010–1027.

Geodesy and Geodynamics
Pages 205-218
Cite this article:
Joshi M, Kothyari GC, Malik K, et al. Response of drainage to tectonics and PS-InSAR derived deformation study in Bilaspur, northwestern Himalaya, India. Geodesy and Geodynamics, 2022, 13(3): 205-218. https://doi.org/10.1016/j.geog.2021.06.005
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return