PDF (14.9 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Open Access

Review of the SBAS InSAR Time-series algorithms, applications, and challenges

Shaowei LiWenbin Xu()Zhiwei Li
School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

Present/permanent address. School of Geosciences and Info-Physics, Central South University Changsha 410083, China.

Show Author Information

Abstract

In the past 30 years, the small baseline subset (SBAS) InSAR time-series technique has emerged as an essential tool for measuring slow surface displacement and estimating geophysical parameters. Because of its ability to monitor large-scale deformation with millimeter accuracy, the SBAS method has been widely used in various geodetic fields, such as ground subsidence, landslides, and seismic activity. The obtained long-term time-series cumulative deformation is vital for studying the deformation mechanism. This article reviews the algorithms, applications, and challenges of the SBAS method. First, we recall the fundamental principle and analyze the shortcomings of the traditional SBAS algorithm, which provides a basic framework for the following improved time series methods. Second, we classify the current improved SBAS techniques from different perspectives: solving the ill-posed equation, increasing the density of high-coherence points, improving the accuracy of monitoring deformation and measuring the multi-dimensional deformation. Third, we summarize the application of the SBAS method in monitoring ground subsidence, permafrost degradation, glacier movement, volcanic activity, landslides, and seismic activity. Finally, we discuss the difficulties faced by the SBAS method and explore its future development direction.

References

[1]

A. Rogers, R.V. Ingalls, Mapping the surface reflectivity by radar interferometry, Science 165 (1969) 797-799.

[2]

H.A. Zebker, R.M. Goldstein, Topographic mapping from interferometric synthetic aperture radar observations, J. Geophys. Res. Solid Earth 91 (1986) 4993-4999.

[3]

A.K. Gabriel, R.M. Goldstein, H.A. Zebker, Mapping small elevation changes over large areas: differential radar interferometry, J. Geophys. Res. Solid Earth 94 (1989) 9183-9191.

[4]

D. Massonnet, M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, T. Rabaute, The displacement field of the Landers earthquake mapped by radar interferometry, Nature 364 (1993) 138-142.

[5]

Z. Lu, T. Masterlark, D. Dzurisin, Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: magma supply dynamics and postemplacement lava flow deformation, J. Geophys. Res. Solid Earth 110 (2005).

[6]

R.M. Goldstein, H. Engelhardt, B. Kamb, R.M. Frolich, Satellite radar interferometry for monitoring ice sheet motion: application to an Antarctic ice stream, Science 262 (1993) 1525-1530.

[7]

C. Carnec, C. Delacourt, Three years of mining subsidence monitored by SAR interferometry, near Gardanne, France, J. Appl. Geophys. 43 (2000) 43-54.

[8]

X. Ding, G. Liu, Z. Li, Z. Li, Y. Chen, Ground subsidence monitoring in Hong Kong with satellite SAR interferometry, Photogramm. Eng. Rem. Sens. 70 (2004) 1151-1156.

[9]

H.A. Zebker, J. Villasenor, Decorrelation in interferometric radar echoes, IEEE Trans. Geosci. Rem. Sens. 30 (1992) 950-959.

[10]
R.F. Hanssen, Radar Interferometry: Data Interpretation and Error Analysis, Vol. 2, Springer Science & Business Media, 2001.
[11]

D.T. Sandwell, E.J. Price, Phase gradient approach to stacking interferograms, J. Geophys. Res. Solid Earth 103 (1998) 30183-30204.

[12]

A. Ferretti, C. Prati, F. Rocca, Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry, IEEE Trans. Geosci. Rem. Sens. 38 (2000) 2202-2212.

[13]

A. Ferretti, C. Prati, F. Rocca, Permanent scatterers in SAR interferometry, IEEE Trans. Geosci. Rem. Sens. 39 (2001) 8-20.

[14]
S.A. Usai, New Approach for Longterm Monitoring of Deformations by Differential SAR Interferometry, 2001.
[15]

P. Berardino, G. Fornaro, R. Lanari, E. Sansosti, A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, IEEE Trans. Geosci. Rem. Sens. 40 (2002) 2375-2383.

[16]

F. Xue, X. Lv, F. Dou, Y. Yun, A review of time-series interferometric SAR techniques: a tutorial for surface deformation analysis, IEEE Geosci. Rem. Sens. Mag. 8 (2020) 22-42.

[17]

F. Casu, M. Manzo, R. Lanari, A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data, Remote Sens. Environ. 102 (2006) 195-210.

[18]
P. Berardino, G. Fornaro, R. Lanari, E. Sansosti, A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms, 2002. Available online, https://scholar.google.com.hk/citations?user=_K6MiXAAAAAJ&hl=zh-CN&oi=sra.
[19]

D. Yunkai, W. Yu, Z. Heng, W. Wei, L. Dacheng, Yu. Wang, Forthcoming spaceborne SAR development, J. Radars. 9 (2020) 1-33, https://doi.org/10.12000/JR20008.

[20]

J. Li, Z.-W. Li, L.-X. Wu, B. Xu, J. Hu, Y.-S. Zhou, Z.-L. Miao, Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake: use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique, J. Hydrol. 559 (2018) 596-608.

[21]

C. Werner, T. Strozzi, U. Wegmüller, Deformation time-series of the lost-hills oil field using a multi-baseline interferometric SAR inversion algorithm with finite-difference smoothing constraints, Trans. Geosci. Rem. Sens. 40 (2002) 2375-2383.

[22]

J. Zhaoying, L. Guolin, T. Qiuxiang, Regularization solution of small baseline subset deformation model inversion, Acta Geod. Cartogr. Sinica 45 (2016) 566-573+600.

[23]

T.R. Lauknes, H.A. Zebker, Y. Larsen, InSAR deformation time series using an L1-norm small-baseline approach, IEEE Trans. Geosci. Rem. Sens. 49 (2010) 536-546.

[24]

D.A. Schmidt, R. Bürgmann, Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set, J. Geophys. Res. Solid Earth 108 (2003).

[25]

P. López-Quiroz, M.-P. Doin, F. Tupin, P. Briole, J.-M. Nicolas, Time series analysis of Mexico City subsidence constrained by radar interferometry, J. Appl. Geophys. 69 (2009) 1-15.

[26]
M.-P. Doin, S. Guillaso, R. Jolivet, C. Lasserre, F. Lodge, G. Ducret, R. Grandin, Presentation of the small baseline NSBAS processing chain on a case example: the Etna deformation monitoring from 2003 to 2010 using Envisat data, in: Proceedings of the Proceedings of the Fringe Symposium, 2011, pp. 3434-3437.
[27]

Y. Morishita, M. Lazecky, T.J. Wright, J.R. Weiss, J.R. Elliott, A. Hooper, LiCSBAS: an open-source InSAR time series analysis package integrated with the LiCSAR automated sentinel-1 InSAR processor, Rem. Sens. 12 (2020) 424.

[28]

S. Usai, A least squares database approach for SAR interferometric data, IEEE Trans. Geosci. Rem. Sens. 41 (2003) 753-760.

[29]

Y. Liu, C. Zhao, Q. Zhang, Z. Lu, J. Zhang, A constrained small baseline subsets (CSBAS) InSAR technique for multiple subsets, Eur. J. Rem. Sens. 53 (2020) 14-26.

[30]

R. Lanari, O. Mora, M. Manunta, J.J. Mallorquí, P. Berardino, E. Sansosti, A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms, IEEE Trans. Geosci. Rem. Sens. 42 (2004) 1377-1386.

[31]

C. Ojha, M. Manunta, R. Lanari, A. Pepe, The constrained-network propagation (C-NetP) technique to improve SBAS-DInSAR deformation time series retrieval, IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 8 (2015) 4910-4921.

[32]

A. Sowter, L. Bateson, P. Strange, K. Ambrose, M.F. Syafiudin, DInSAR estimation of land motion using intermittent coherence with application to the South Derbyshire and Leicestershire coalfields, Remote Sens. Lett. 4 (2013) 979-987.

[33]

D. Gee, A. Sowter, A. Novellino, S. Marsh, J. Gluyas, Monitoring land motion due to natural gas extraction: validation of the Intermittent SBAS (ISBAS) DInSAR algorithm over gas fields of North Holland, The Netherlands, Mar. Petrol. Geol. 77 (2016) 1338-1354.

[34]

O. Mora, J.J. Mallorqui, A. Broquetas, Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images, IEEE Trans. Geosci. Rem. Sens. 41 (2003) 2243-2253.

[35]

L. Cascini, G. Fornaro, D. Peduto, Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas, ISPRS J. Photogrammetry Remote Sens. 64 (2009) 598-611.

[36]
D. Ge, Y. Wang, L. Zhang, Y. Xia, X. Guo, Large scale land subsidence monitoring with a reduced set of SAR images, in: Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, 2009, pp. Ⅳ-558-Ⅳ-561.
[37]

K. Pawluszek-Filipiak, A. Borkowski, Integration of DInSAR and SBAS techniques to determine mining-related deformations using sentinel-1 data: the case study of rydułtowy mine in Poland, Rem. Sens. 12 (2020) 242.

[38]

R. Tomás, Y. Márquez, J.M. Lopez-Sanchez, J. Delgado, P. Blanco, J.J. Mallorquí, M. Martínez, G. Herrera, J. Mulas, Mapping ground subsidence induced by aquifer overexploitation using advanced Differential SAR Interferometry: vega Media of the Segura River (SE Spain) case study, Remote Sens. Environ. 98 (2005) 269-283.

[39]

L. Zhang, Z. Lu, X. Ding, H.-S. Jung, G. Feng, C.-W. Lee, Mapping ground surface deformation using temporarily coherent point SAR interferometry: application to Los Angeles Basin, Remote Sens. Environ. 117 (2012) 429-439.

[40]

L. Zhang, X. Ding, Z. Lu, Modeling PSInSAR time series without phase unwrapping, IEEE Trans. Geosci. Rem. Sens. 49 (2010) 547-556.

[41]

L. Zhang, X. Ding, Z. Lu, Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions, ISPRS J. Photogrammetry Remote Sens. 66 (2011) 146-152.

[42]

Q. Sun, J. Hu, L. Zhang, X. Ding, Towards slow-moving landslide monitoring by integrating multi-sensor InSAR time series datasets: the Zhouqu case study, China, Rem. Sens. 8 (2016) 908.

[43]

G. Liu, H. Jia, R. Zhang, Z. Li, Q. Chen, X. Luo, G. Cai, Ultrashort-baseline persistent scatterer radar interferometry for subsidence detection, ISPRS Ann. Photogram. Remote Sens. Sp Inform. Sci. 1 (2012) 41-48.

[44]

F. Casu, A. Manconi, A. Pepe, R. Lanari, Deformation time-series generation in areas characterized by large displacement dynamics: the SAR amplitude pixel-offset SBAS technique, IEEE Trans. Geosci. Rem. Sens. 49 (2011) 2752-2763.

[45]

F. Casu, A. Manconi, Four-dimensional surface evolution of active rifting from spaceborne SAR data, Geosphere 12 (2016) 697-705.

[46]

A. Manconi, F. Casu, F. Ardizzone, M. Bonano, M. Cardinali, C. De Luca, E. Gueguen, I. Marchesini, M. Parise, C. Vennari, Brief communication: rapid mapping of landslide events: the 3 December 2013 Montescaglioso landslide, Italy, Nat. Hazards Earth Syst. Sci. 14 (2014) 1835.

[47]

L.D. Euillades, P.A. Euillades, N.C. Riveros, M.H. Masiokas, L. Ruiz, P. Pitte, S. Elefante, F. Casu, S. Balbarani, Detection of glaciers displacement time-series using SAR, Remote Sens. Environ. 184 (2016) 188-198.

[48]
A. Pepe, Generation of Earth's surface three-dimensional (3-D) displacement time-series by multiple-platform SAR data, in: Time Series Analysis and Applications, IntechOpen, 2017.
[49]

S. Samsonov, N. d'Oreye, Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province, Geophys. J. Int. 191 (2012) 1095-1108.

[50]

S. Samsonov, N. d'Oreye, B. Smets, Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method, Int. J. Appl. Earth Obs. Geoinf. 23 (2013) 142-154.

[51]

S.V. Samsonov, N. d'Oreye, Multidimensional small baseline subset (MSBAS) for two-dimensional deformation analysis: case study Mexico City, Can. J. Rem. Sens. 43 (2017) 318-329.

[52]

S. Samsonov, Three-dimensional deformation time series of glacier motion from multiple-aperture DInSAR observation, J. Geodes. 93 (2019) 2651-2660.

[53]

S. Samsonov, A. Dille, O. Dewitte, F. Kervyn, N. d'Oreye, Satellite interferometry for mapping surface deformation time series in one, two and three dimensions: a new method illustrated on a slow-moving landslide, Eng. Geol. 266 (2020), 105471.

[54]

L. Guo, J. Li, Z.W. Li, L.X. Wu, X. Li, J. Hu, H.L. Li, H.Y. Li, Z.L. Miao, Z.Q. Li, The surge of the Hispar Glacier, central karakoram: SAR 3-D flow velocity time series and thickness changes, J. Geophys. Res. Solid Earth 125 (2020), e2019JB018945.

[55]

F. Casu, S. Elefante, P. Imperatore, I. Zinno, M. Manunta, C. De Luca, R. Lanari, SBAS-DInSAR parallel processing for deformation time-series computation, IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 7 (2014) 3285-3296.

[56]

C. De Luca, I. Zinno, M. Manunta, R. Lanari, F. Casu, Large areas surface deformation analysis through a cloud computing P-SBAS approach for massive processing of DInSAR time series, Remote Sens. Environ. 202 (2017) 3-17.

[57]

S.-H. Hong, S. Wdowinski, S.-W. Kim, J.-S. Won, Multi-temporal monitoring of wetland water levels in the Florida Everglades using interferometric synthetic aperture radar (InSAR), Remote Sens. Environ. 114 (2010) 2436-2447.

[58]

D. Lin, L. Guoxiang, Z. Rui, W. Xiaowen, Y. Bing, T. Jia, Z. Heng, A multi-platform MC-SBAS method for extracting long-term ground deformation, Acta Geod. Cartogr. Sinica 45 (2016) 213.

[59]

L. Bai, L. Jiang, H. Wang, Q. Sun, Spatiotemporal characterization of land subsidence and uplift (2009–2010) over wuhan in central China revealed by terrasar-X insar analysis, Rem. Sens. 8 (2016) 350.

[60]

Q. Zhao, H. Lin, L. Jiang, F. Chen, S. Cheng, A study of ground deformation in the Guangzhou urban area with persistent scatterer interferometry, Sensors 9 (2009) 503-518.

[61]

C.-S. Yang, Q. Zhang, C.-Y. Zhao, Q.-L. Wang, L.-Y. Ji, Monitoring land subsidence and fault deformation using the small baseline subset InSAR technique: a case study in the Datong Basin, China, J. Geodyn. 75 (2014) 34-40.

[62]

M. Peng, C. Zhao, Q. Zhang, Z. Lu, Z. Li, Research on spatiotemporal land deformation (2012–2018) over Xi’an, China, with multi-sensor SAR datasets, Rem. Sens. 11 (2019) 664.

[63]

C. Beibei, G. Huili, L. Xiaojuan, L. Kunchao, W. Yanbing, W. Pengfei, Relationship between load density and land subsidence in typical groundwater funnel area of Beijing, China, J. Basic Sci. Eng. 21 (2013) 1046-1056.

[64]

Y. Morishita, Nationwide urban ground deformation monitoring in Japan using Sentinel-1 LiCSAR products and LiCSBAS, Prog. Earth Planet. Sci. 8 (2021) 1-23.

[65]

D.L. Galloway, T.J. Burbey, Regional land subsidence accompanying groundwater extraction, Hydrogeol. J. 19 (2011) 1459-1486.

[66]

C. Zhou, H. Gong, B. Chen, M. Gao, Q. Cao, J. Cao, L. Duan, J. Zuo, M. Shi, Land subsidence response to different land use types and water resource utilization in Beijing-Tianjin-Hebei, China, Rem. Sens. 12 (2020) 457.

[67]

E. Chaussard, P. Milillo, R. Bürgmann, D. Perissin, E.J. Fielding, B. Baker, Remote sensing of ground deformation for monitoring groundwater management practices: application to the Santa Clara Valley during the 2012–2015 California drought, J. Geophys. Res. Solid Earth 122 (2017) 8566-8582.

[68]

S.W. Park, S.H. Hong, Nonlinear modeling of subsidence from a decade of InSAR time series, Geophys. Res. Lett. 48 (2021), e2020GL090970.

[69]

Y. Du, G. Feng, L. Liu, H. Fu, X. Peng, D. Wen, Understanding land subsidence along the coastal areas of Guangdong, China, by analyzing multi-track MTInSAR data, Rem. Sens. 12 (2020) 299.

[70]

H. Zhao, H. Qian, Y. Li, J.-B. Peng, Land subsidence model under dual effects of groundwater pumping and construction loading, J. Earth Sci. Environ. 1 (2008).

[71]

J. Baek, S.-W. Kim, H.-J. Park, H.-S. Jung, K.-D. Kim, J.W. Kim, Analysis of ground subsidence in coal mining area using SAR interferometry, Geosci. J. 12 (2008) 277-284.

[72]

Z.W. Li, Z.F. Yang, J.J. Zhu, J. Hu, Y.J. Wang, P.X. Li, G.L. Chen, Retrieving three-dimensional displacement fields of mining areas from a single InSAR pair, J. Geodes. 89 (2015) 17-32.

[73]

Z. Yang, Z. Li, J. Zhu, G. Feng, Q. Wang, J. Hu, C. Wang, Deriving time-series three-dimensional displacements of mining areas from a single-geometry InSAR dataset, J. Geodes. 92 (2018) 529-544.

[74]
X. Rao, Y. Tang, Small baseline subsets approach of DInSAR for investigating land surface deformation along the high-speed railway, in: Proceedings of the Land Surface Remote Sensing II, 2014, p. 92601C.
[75]

S. Salvi, S. Stramondo, G. Funning, A. Ferretti, F. Sarti, A. Mouratidis, The Sentinel-1 mission for the improvement of the scientific understanding and the operational monitoring of the seismic cycle, Remote Sens. Environ. 120 (2012) 164-174.

[76]

J. Biggs, T. Wright, Z. Lu, B. Parsons, Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska, Geophys. J. Int. 170 (2007) 1165-1179.

[77]

H. Wang, T. Wright, Satellite geodetic imaging reveals internal deformation of western Tibet, Geophys. Res. Lett. 39 (2012).

[78]

J.R. Elliott, J. Biggs, B. Parsons, T. Wright, InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays, Geophys. Res. Lett. 35 (2008).

[79]

O. Cavalié, C. Lasserre, M.-P. Doin, G. Peltzer, J. Sun, X. Xu, Z.-K. Shen, Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR, Earth Planet Sci. Lett. 275 (2008) 246-257.

[80]

R. Jolivet, C. Lasserre, M.P. Doin, S. Guillaso, G. Peltzer, R. Dailu, J. Sun, Z.K. Shen, X. Xu, Shallow creep on the Haiyuan fault (Gansu, China) revealed by SAR interferometry, J. Geophys. Res. Solid Earth 117 (2012).

[81]

E. Hussain, A. Hooper, T.J. Wright, R.J. Walters, D.P. Bekaert, Interseismic strain accumulation across the central North Anatolian Fault from iteratively unwrapped InSAR measurements, J. Geophys. Res. Solid Earth 121 (2016) 9000-9019.

[82]

Z. Li, E.J. Fielding, P. Cross, Integration of InSAR time-series analysis and water-vapor correction for mapping postseismic motion after the 2003 Bam (Iran) earthquake, IEEE Trans. Geosci. Rem. Sens. 47 (2009) 3220-3230.

[83]

K. Wang, Y. Fialko, Observations and modeling of coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal) earthquake, J. Geophys. Res. Solid Earth 123 (2018) 761-779.

[84]

Y. Wen, Z. Li, C. Xu, I. Ryder, R. Bürgmann, Postseismic motion after the 2001 Mw 7.8 Kokoxili earthquake in Tibet observed by InSAR time series, J. Geophys. Res. Solid Earth 117 (2012).

[85]

C. Yang, T. Wang, S. Zhu, B. Han, J. Dong, C. Zhao, Co-seismic inversion and post-seismic deformation mechanism analysis of 2019 California earthquake, Rem. Sens. 13 (2021) 608.

[86]

C. Zhao, Z. Lu, Q. Zhang, J. de La Fuente, Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA, Remote Sens. Environ. 124 (2012) 348-359.

[87]
A. Novellino, F. Cigna, A. Sowter, M.F. Syafiudin, D. Di Martire, M. Ramondini, D. Calcaterra, Intermittent small baseline subset (ISBAS) InSAR analysis to monitor landslides in Costa Della Gaveta, Southern Italy, in: Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium, IGARSS, 2015, pp. 3536-3539.
[88]
R.-F. Chen, C.-Y. Lee, H.-Y. Yin, H.-Y. Huang, K.-P. Cheng, C.-W. Lin, Monitoring the deep-seated landslides by using ALOS/PALSAR satellite imagery in the disaster area of 2009 Typhoon Morakot, Taiwan, in: Proceedings of the Workshop on World Landslide Forum, 2017, pp. 239-247.
[89]

L. Sun, J.-P. Muller, J. Chen, Time series analysis of very slow landslides in the three Gorges region through small baseline SAR offset tracking, Rem. Sens. 9 (2017) 1314.

[90]

Z.-W. Li, Investigation of the seasonal oscillation of the permafrost over Qinghai-Tibet Plateau with SBAS-InSAR algorithm, Diqiu Wuli Xuebao 56 (2013) 1476-1486.

[91]
R. Zhao, in: Z. Li (Ed.), Permafrost Deformation Model Establishment and Active Layer Thickness Inversion Based on SBAS-InSAR, Central South University, 2014.
[92]

L. Liu, T. Zhang, J. Wahr, InSAR measurements of surface deformation over permafrost on the North Slope of Alaska, J. Geophys. Res.: Earth Surf. 115 (2010).

[93]

F. Chen, H. Lin, Z. Li, Q. Chen, J. Zhou, Interaction between permafrost and infrastructure along the Qinghai–Tibet Railway detected via jointly analysis of C-and L-band small baseline SAR interferometry, Remote Sens. Environ. 123 (2012) 532-540.

[94]

R. Zhao, Z.-W. Li, G.-c. Feng, Q.-j. Wang, J. Hu, Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: with emphasis on climatic factors modeling, Remote Sens. Environ. 184 (2016) 276-287.

[95]

Z. Jianjun, L. Zhiwei, H. Jun, Research progress and methods of InSAR for deformation monitoring, Acta Geod. Cartogr. Sinica 46 (2017) 1717.

[96]

Z. Jianjun, Y. Zefa, L. Zhiwei, Recent progress in retrieving and predicting mining-induced 3D displace-ments using InSAR, Acta Geod. Cartogr. Sinica 48 (2019) 135.

[97]

J. Hu, Z. Li, X. Ding, J. Zhu, L. Zhang, Q. Sun, Resolving three-dimensional surface displacements from InSAR measurements: a review, Earth Sci. Rev. 133 (2014) 1-17.

[98]

A. Manconi, F. Casu, Joint analysis of displacement time series retrieved from SAR phase and amplitude: impact on the estimation of volcanic source parameters, Geophys. Res. Lett. 39 (2012).

[99]
R. Zhao, in: F. Yang, G. Zhang (Eds.), Research on Model and Method of Geometric Calibration for Space-Borne SAR, Liaoning Technical University, 2017.
[100]

R. Michel, J.P. Avouac, J. Taboury, Measuring ground displacements from SAR amplitude images: application to the Landers earthquake, Geophys. Res. Lett. 26 (1999) 875-878.

[101]

N.B. Bechor, H.A. Zebker, Measuring two-dimensional movements using a single InSAR pair, Geophys. Res. Lett. 33 (2006).

[102]

J.D. Moore, H. Yu, C.-H. Tang, T. Wang, S. Barbot, D. Peng, S. Masuti, J. Dauwels, Y.-J. Hsu, V. Lambert, Imaging the distribution of transient viscosity after the 2016 Mw 7.1 Kumamoto earthquake, Science 356 (2017) 163-167.

[103]

R. Jolivet, P.S. Agram, N.Y. Lin, M. Simons, M.P. Doin, G. Peltzer, Z. Li, Improving InSAR geodesy using global atmospheric models, J. Geophys. Res. Solid Earth 119 (2014) 2324-2341.

[104]

J. Catalão, G. Nico, R. Hanssen, C. Catita, Merging GPS and atmospherically corrected InSAR data to map 3-D terrain displacement velocity, IEEE Trans. Geosci. Rem. Sens. 49 (2011) 2354-2360.

[105]

D. Bekaert, A. Hooper, T. Wright, A spatially variable power law tropospheric correction technique for InSAR data, J. Geophys. Res. Solid Earth 120 (2015) 1345-1356.

Geodesy and Geodynamics
Pages 114-126
Cite this article:
Li S, Xu W, Li Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geodesy and Geodynamics, 2022, 13(2): 114-126. https://doi.org/10.1016/j.geog.2021.09.007
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return