The eastern part of Java Island is transversed by major faults such as Cepu, Blumbang, Surabaya, and Waru Segment, part of the Kendeng Fault, Wonsorejo Fault, Pasuruan Fault, and Probolinggo Fault. Due to the major fault, we used decomposition of identified fault from the Global Navigation Satellite System (GNSS) observation data to identify the potential of local deformation. We analyzed surface deformation due to the effect of major fault using scaling law and elastic half-space method. We investigated the possibility of unidentified fault using strain rates based on velocity vector data before and after correcting the effect of a major fault. We found that strain calculation for principal strain value in the eastern part of Java Island is less than one microstrain/year and the dominant one with a compression pattern due to the Sunda subduction zone. The maximum shear strain rate value goes from 0.002 to 0.094 microstrain/year, and the dilatation rate value ranges from −0.141 to 0.038 microstrain/year, which correlates with the reverse of the Kendeng Fault. A higher compression pattern outside the major fault in a differential maximum shear strain rate might indicate a local fault.
R.E. Abercrombie, M. Antolik, K. Felzer, G. Ekström, The 1994 Java tsunami earthquake: slip over a subducting seamount, J. Geophys. Res. Solid Earth 106 (B4) (2001) 6595–6607, https://doi.org/10.1029/2000jb900403.
A. Susilo, Z. Adnan, Probabilistic seismic hazard analysis of East java region, Indonesia, Int. J. Comput. Electron. Eng. 5 (3) (2013) 341–344, https://doi.org/10.7763/ijcee.2013.v5.728.
R. McCaffrey, Active tectonics of the eastern Sunda and Banda arcs, J. Geophys. Res. (1988), https://doi.org/10.1029/jb093ib12p15163.
E. Gunawan, S. Widiyantoro, Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate, J. Geodyn. 123 (January) (2019) 49–54, https://doi.org/10.1016/j.jog.2019.01.004.
Y. Okada, Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am. 75 (2) (1985) 1135–1154.
D.L. Wells, K.J. Coppersmith, New empical relationship between magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am. 84 (4) (1994) 974–1002.
H.Z. Abidin, et al., Crustal deformation studies in java (Indonesia) using GPS, J. Earthq. Tsunami 3 (2) (2009) 77–88.
H. Andreas, H. Zainal Abidin, D. Anggreni Sarsito, I. Meilano, S. Susilo, Investigating the tectonic influence to the anthropogenic subsidence along northern coast of Java Island Indonesia using GNSS data sets, E3S Web Conf. 94 (May) (2019), https://doi.org/10.1051/e3sconf/20199404005.
C. Pratama, F.F. Susanta, R. Ilahi, A.F. Khomaini, H.W.K. Abdillah, Coseismic displacement accumulation between 1996 and 2019 using A global empirical law on Indonesia continuously operating reference station (InaCORS), J. Geospatial Inf. Sci. Eng. 2 (2) (2019) 237–244, https://doi.org/10.22146/jgise.51130.
Z. Altamimi, X. Collilieux, J. Legrand, B. Garayt, C. Boucher, ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res. Solid Earth 112 (9) (2007) 1–19, https://doi.org/10.1029/2007JB004949.
F. Lyard, F. Lefevre, T. Letellier, O. Francis, Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam. 56 (5–6) (2006) 394–415, https://doi.org/10.1007/s10236-006-0086-x.
W.J.F. Simons, et al., A decade of GPS in southeast asia: resolving Sundaland motion and boundaries, J. Geophys. Res. Solid Earth 112 (6) (2007) 1–20, https://doi.org/10.1029/2005JB003868.
Y. Ohta, et al., Coseismic and postseismic deformation related to the 2007 chuetsu-oki, niigata earthquake, Earth Planets Space 60 (11) (2008) 1081–1086.
T. Sagiya, S. Miyazaki, T. Tada, Continuous GPS array and present-day crustal deformation of Japan, Pure Appl. Geophys. 157 (11–12) (2000) 2303–2322, https://doi.org/10.1007/978-3-0348-7695-7_26.
Z.K. Shen, M. Wang, Y. Zeng, F. Wang, Optimal interpolation of spatially discretized geodetic data, Bull. Seismol. Soc. Am. 105 (4) (2015) 2117–2127, https://doi.org/10.1785/0120140247.
N. Widjajanti, et al., Present-day crustal deformation revealed active tectonics in Yogyakarta, Indonesia inferred from GPS observations, Geod. Geodyn. 11 (2) (2020) 135–142, https://doi.org/10.1016/j.geog.2020.02.001.
H. Kanamori, D.L. Anderson, Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am. 65 (5) (1975) 1073–1095.
D. Sarah, E. Soebowo, Land subsidence threats and its management in the north coast of java, IOP Conf. Ser. Earth Environ. Sci. 118 (2018) 1, https://doi.org/10.1088/1755-1315/118/1/012042.
A. Koulali, et al., The kinematics of crustal deformation in Java from GPS observations: implications for fault slip partitioning, Earth Planet Sci. Lett. 458 (2017) 69–79, https://doi.org/10.1016/j.epsl.2016.10.039.
S. Bachri, J. Stötter, M. Monreal, J. Sartohadi, The calamity of eruptions, or an eruption of benefits? Mt. Bromo human-volcano system a case study of an open-risk perception, Nat. Hazards Earth Syst. Sci. (2015), https://doi.org/10.5194/nhess-15-277-2015.
A.Y.P. Wardoyo, J.A.E. Noor, G. Elbers, S. Schmitz, S.T. Flaig, A. Budianto, Characterizing volcanic ash elements from the 2015 eruptions of bromo and raung volcanoes, Indonesia, Pol. J. Environ. Stud. (2020), https://doi.org/10.15244/pjoes/99101.
A.D. Nugraha, P. Supendi, H.A. Shiddiqi, S. Widiyantoro, Unexpected earthquake of June 25th, 2015 in Madiun, East Java, AIP Conf. Proc. 1730 (2016), https://doi.org/10.1063/1.4947369.
G.I. Marliyani, J.R. Arrowsmith, H. Helmi, Evidence for multiple ground-rupturing earthquakes in the past 4,000 Years along the Pasuruan Fault, East Java, Indonesia: documentation of active normal faulting in the javan backarc, Tectonics (2019), https://doi.org/10.1029/2018TC005255.
D. Santoso, et al., Gravity structure around Mt. Pandan, Madiun, East Java, Indonesia and its relationship to 2016 seismic activity, Open Geosci. 10 (1) (2018) 882–888, https://doi.org/10.1515/geo-2018-0069.
H.R. Smyth, R. Hall, G.J. Nichols, Cenozoic volcanic arc history of East Java, Indonesia: the stratigraphic record of eruptions on an active continental margin, Spec. Pap. Geol. Soc. Am. 436 (10) (2008) 199–222, https://doi.org/10.1130/2008.2436(10).
P. Wessel, W.H.F. Smith, R. Scharroo, J. Luis, F. Wobbe, Generic mapping tools: improved version released, Eos 94 (45) (2013) 409–410, https://doi.org/10.1002/2013EO450001.