PDF (10.4 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Open Access

Active tectonics of the eastern java based on a decade of recent continuous geodetic observation

Retno Eka Yuni PurwaningsihaAdelia SekarsariaTika Widya SariaCecep Pratamab()Sidik Tri Wibowoc
Graduate School of Geodetic Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
Department of Geodetic Engineering, Universitas Gadjah Mada, Yogyakarta, Indonesia
Geospatial Information Agency, Cibinong, Indonesia
Show Author Information

Abstract

The eastern part of Java Island is transversed by major faults such as Cepu, Blumbang, Surabaya, and Waru Segment, part of the Kendeng Fault, Wonsorejo Fault, Pasuruan Fault, and Probolinggo Fault. Due to the major fault, we used decomposition of identified fault from the Global Navigation Satellite System (GNSS) observation data to identify the potential of local deformation. We analyzed surface deformation due to the effect of major fault using scaling law and elastic half-space method. We investigated the possibility of unidentified fault using strain rates based on velocity vector data before and after correcting the effect of a major fault. We found that strain calculation for principal strain value in the eastern part of Java Island is less than one microstrain/year and the dominant one with a compression pattern due to the Sunda subduction zone. The maximum shear strain rate value goes from 0.002 to 0.094 microstrain/year, and the dilatation rate value ranges from −0.141 to 0.038 microstrain/year, which correlates with the reverse of the Kendeng Fault. A higher compression pattern outside the major fault in a differential maximum shear strain rate might indicate a local fault.

References

[1]

R.E. Abercrombie, M. Antolik, K. Felzer, G. Ekström, The 1994 Java tsunami earthquake: slip over a subducting seamount, J. Geophys. Res. Solid Earth 106 (B4) (2001) 6595–6607, https://doi.org/10.1029/2000jb900403.

[2]
P.U.P.R. Pustlitbang, Peta Sumber Dan Bahaya Gempa Indonesia Tahuan 2017, Kabupaten Bandung: Pusat Penelitian dan Pengembangan Perumahan dan Pemukiman Badan Penelitian dan Pengembangan Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2017.
[3]

A. Susilo, Z. Adnan, Probabilistic seismic hazard analysis of East java region, Indonesia, Int. J. Comput. Electron. Eng. 5 (3) (2013) 341–344, https://doi.org/10.7763/ijcee.2013.v5.728.

[4]

R. McCaffrey, Active tectonics of the eastern Sunda and Banda arcs, J. Geophys. Res. (1988), https://doi.org/10.1029/jb093ib12p15163.

[5]

E. Gunawan, S. Widiyantoro, Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate, J. Geodyn. 123 (January) (2019) 49–54, https://doi.org/10.1016/j.jog.2019.01.004.

[6]

Y. Okada, Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am. 75 (2) (1985) 1135–1154.

[7]

D.L. Wells, K.J. Coppersmith, New empical relationship between magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull. Seismol. Soc. Am. 84 (4) (1994) 974–1002.

[8]

H.Z. Abidin, et al., Crustal deformation studies in java (Indonesia) using GPS, J. Earthq. Tsunami 3 (2) (2009) 77–88.

[9]

H. Andreas, H. Zainal Abidin, D. Anggreni Sarsito, I. Meilano, S. Susilo, Investigating the tectonic influence to the anthropogenic subsidence along northern coast of Java Island Indonesia using GNSS data sets, E3S Web Conf. 94 (May) (2019), https://doi.org/10.1051/e3sconf/20199404005.

[10]

C. Pratama, F.F. Susanta, R. Ilahi, A.F. Khomaini, H.W.K. Abdillah, Coseismic displacement accumulation between 1996 and 2019 using A global empirical law on Indonesia continuously operating reference station (InaCORS), J. Geospatial Inf. Sci. Eng. 2 (2) (2019) 237–244, https://doi.org/10.22146/jgise.51130.

[11]

Z. Altamimi, X. Collilieux, J. Legrand, B. Garayt, C. Boucher, ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res. Solid Earth 112 (9) (2007) 1–19, https://doi.org/10.1029/2007JB004949.

[12]
T.A. Herring, R.W. King, M.A. Floyd, S.C. Mcclusky, P. Sciences, GAMIT Reference Manual 10.6, June, 2015, pp. 1–168 [Online]. Available: http://geoweb.mit.edu/gg/docs/GAMIT_Ref.pdf.
[13]

F. Lyard, F. Lefevre, T. Letellier, O. Francis, Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam. 56 (5–6) (2006) 394–415, https://doi.org/10.1007/s10236-006-0086-x.

[14]
D.D. McCarthy, G. Petit, IERS Conventions (2003), 2004.
[15]

W.J.F. Simons, et al., A decade of GPS in southeast asia: resolving Sundaland motion and boundaries, J. Geophys. Res. Solid Earth 112 (6) (2007) 1–20, https://doi.org/10.1029/2005JB003868.

[16]
C. Jekeli, Geometric Reference Systems in Geodesy, 2006.
[17]
C. Pratama, I. Meilano, E. Sunarti, S. Haksama, M.D. Sulistiyo, Data-driven of time series decomposition on estimating geodetic secular motion around palu-koro fault zone, in: 2020 8th Int. Conf. Inf. Commun. Technol, ICoICT, 2020, p. 2020, https://doi.org/10.1109/ICoICT49345.2020.9166422.
[18]

Y. Ohta, et al., Coseismic and postseismic deformation related to the 2007 chuetsu-oki, niigata earthquake, Earth Planets Space 60 (11) (2008) 1081–1086.

[19]

T. Sagiya, S. Miyazaki, T. Tada, Continuous GPS array and present-day crustal deformation of Japan, Pure Appl. Geophys. 157 (11–12) (2000) 2303–2322, https://doi.org/10.1007/978-3-0348-7695-7_26.

[20]

Z.K. Shen, M. Wang, Y. Zeng, F. Wang, Optimal interpolation of spatially discretized geodetic data, Bull. Seismol. Soc. Am. 105 (4) (2015) 2117–2127, https://doi.org/10.1785/0120140247.

[21]

N. Widjajanti, et al., Present-day crustal deformation revealed active tectonics in Yogyakarta, Indonesia inferred from GPS observations, Geod. Geodyn. 11 (2) (2020) 135–142, https://doi.org/10.1016/j.geog.2020.02.001.

[22]
D.M. Ragan, Structural Geology: An Introduction to Geometrical Techniques, fourth ed., Cambridge University Press, United States of America, 2009 fourth ed.
[23]
G.H. Girty, Earth, Perilous Processes, Understanding Natural, behind Sciences, Geological, 5, 2009, pp. 1–9, ver 1.0.
[24]
C.M.R. Fowler, The Solid Earth an Introduction to Global Geophysics, second ed., Press Syndicate of The University Of Cambridge, London, 2005.
[25]

H. Kanamori, D.L. Anderson, Theoretical basis of some empirical relations in seismology, Bull. Seismol. Soc. Am. 65 (5) (1975) 1073–1095.

[26]

D. Sarah, E. Soebowo, Land subsidence threats and its management in the north coast of java, IOP Conf. Ser. Earth Environ. Sci. 118 (2018) 1, https://doi.org/10.1088/1755-1315/118/1/012042.

[27]

A. Koulali, et al., The kinematics of crustal deformation in Java from GPS observations: implications for fault slip partitioning, Earth Planet Sci. Lett. 458 (2017) 69–79, https://doi.org/10.1016/j.epsl.2016.10.039.

[28]

S. Bachri, J. Stötter, M. Monreal, J. Sartohadi, The calamity of eruptions, or an eruption of benefits? Mt. Bromo human-volcano system a case study of an open-risk perception, Nat. Hazards Earth Syst. Sci. (2015), https://doi.org/10.5194/nhess-15-277-2015.

[29]

A.Y.P. Wardoyo, J.A.E. Noor, G. Elbers, S. Schmitz, S.T. Flaig, A. Budianto, Characterizing volcanic ash elements from the 2015 eruptions of bromo and raung volcanoes, Indonesia, Pol. J. Environ. Stud. (2020), https://doi.org/10.15244/pjoes/99101.

[30]

A.D. Nugraha, P. Supendi, H.A. Shiddiqi, S. Widiyantoro, Unexpected earthquake of June 25th, 2015 in Madiun, East Java, AIP Conf. Proc. 1730 (2016), https://doi.org/10.1063/1.4947369.

[31]
W. Lestari, A. Widodo, D.D. Warnana, F. Syaifuddin, W. Utama, J.P.G.N. Rochman, Mapping of kendeng thrust active fault in east Java using magnetotelluric method, in: EAGE-HAGI 1st Asia Pacific Meeting on Near Surface Geoscience and Engineering, 2018, https://doi.org/10.3997/2214-4609.201800424..
[32]

G.I. Marliyani, J.R. Arrowsmith, H. Helmi, Evidence for multiple ground-rupturing earthquakes in the past 4,000 Years along the Pasuruan Fault, East Java, Indonesia: documentation of active normal faulting in the javan backarc, Tectonics (2019), https://doi.org/10.1029/2018TC005255.

[33]
M. Okuno, et al., Geomorphological classification of post-caldera volcanoes in the Buyan-Bratan caldera, North Bali, Indonesia, in: IOP Conference Series: Earth and Environmental Science, 2018, https://doi.org/10.1088/1755-1315/103/1/012014.
[34]

D. Santoso, et al., Gravity structure around Mt. Pandan, Madiun, East Java, Indonesia and its relationship to 2016 seismic activity, Open Geosci. 10 (1) (2018) 882–888, https://doi.org/10.1515/geo-2018-0069.

[35]

H.R. Smyth, R. Hall, G.J. Nichols, Cenozoic volcanic arc history of East Java, Indonesia: the stratigraphic record of eruptions on an active continental margin, Spec. Pap. Geol. Soc. Am. 436 (10) (2008) 199–222, https://doi.org/10.1130/2008.2436(10).

[36]

P. Wessel, W.H.F. Smith, R. Scharroo, J. Luis, F. Wobbe, Generic mapping tools: improved version released, Eos 94 (45) (2013) 409–410, https://doi.org/10.1002/2013EO450001.

Geodesy and Geodynamics
Pages 376-385
Cite this article:
Purwaningsih REY, Sekarsari A, Sari TW, et al. Active tectonics of the eastern java based on a decade of recent continuous geodetic observation. Geodesy and Geodynamics, 2022, 13(4): 376-385. https://doi.org/10.1016/j.geog.2021.12.004
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return