PDF (12.8 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Open Access

Coastal transgression and regression from 1980 to 2020 and shoreline forecasting for 2030 and 2040, using DSAS along the southern coastal tip of Peninsular India

S. Chrisben SamB. Gurugnanam()
Centre for Applied Geology, The Gandhigram Rural Institute Deemed to be University, Dindigul, Tamil Nadu, India
Show Author Information

Abstract

This study explains the multi-decadal shoreline changes along the coast of Kanyakumari from 1980 to 2020. The shorelines are extracted from the Landsat images to estimate the shoreline dynamics and future predictions using Digital Shoreline Analysis System (DSAS). By the estimation of End Point Rate (EPR) and Linear Regression Rate (LRR), it is quantified that the maximum erosion is 5.01 m/yr (EPR) and 6.13 m/yr (LRR) consistently with the maximum accretion of 3.77 m/yr (EPR) and 3.11 m/yr (LRR) along the entire coastal stretch of 77 km. The future shoreline predicted using the Kalman filter forecasted that Inayam, Periyakattuthurai and Kodimunai are highly prone to erosion with a shift of 170 m, 157 m and 145 m by 2030 and 194 m, 182 m and 165 m by 2040 towards the land. Also, the western coast is highly prone to erosion and it is predicted that certain villages are prone to loss of economy and livelihood. The outcome of this study may guide the coastal researchers to understand the evolution and decision-makers to evolve with alternative sustainable management plans in the future.

References

[1]

M. Mahapatra, R. Ratheesh, A.S. Rajawat, Shoreline change monitoring along the South Gujarat coast using remote sensing and GIS techniques, Int. J. Geol. Earth Environ. Sci. 3 (2013) 115–120.

[2]

A.A. Alesheikh, A. Ghorbanali, N. Nouri, Coastline change detection using remote sensing, Int. J. Environ. Sci. Technol. 4 (2007) 61–66, https://doi.org/10.1007/BF03325962.

[3]

N. Xu, Z. Gao, J. Ning, Analysis of the characteristics and causes of coastline variation in the Bohai Rim (1980–2010), Environ. Earth Sci. 75 (2016) 1–11, https://doi.org/10.1007/s12665-016-5452-5.

[4]

B. Castelle, B. Guillot, V. Marieu, E. Chaumillon, V. Hanquiez, S. Bujan, C. Poppeschi, Spatial and temporal patterns of shoreline change of a 280-km high-energy disrupted sandy coast from 1950 to 2014: SW France, Estuar. Coast Shelf Sci. 200 (2018) 212–223, https://doi.org/10.1016/j.ecss.2017.11. 005.

[5]

A. Shetty, K.S. Jayappa, R. Ramakrishnan, A.S. Rajawat, Shoreline dynamics and vulnerability assessment along the Karnataka coast, India: a geo-statistical approach, J. Indian Soc. Remote Sens. 47 (2019) 1223–1234, https://doi.org/10.1007/s12524-019-00980-0.

[6]

W. Rabehi, M. Guerfi, H. Mahi, E. Rojas-Garcia, Spatiotemporal monitoring of coastal urbanization dynamics: case study of algiers' bay, Algeria, J. Indian Soc. Remote Sens. 47 (2019) 1917–1936, https://doi.org/10.1007/s12524-019- 01037-y.

[7]

C. Chen, J. Bu, Y. Zhang, Y. Zhuang, Y. Chu, J. Hu, B. Guo, The application of the tasseled cap transformation and feature knowledge for the extraction of coastline information from remote sensing images, Adv. Space Res. 64 (2019) 1780–1791, https://doi.org/10.1016/j.asr.2019.07.032.

[8]

P.S. Mujabar, N. Chandrasekar, A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using digital shoreline analysis system, Geo Spatial Inf. Sci. 14 (2011) 282–293.

[9]

J.P. Mills, S.J. Buckley, H.L. Mitchell, P.J. Clarke, S.J. Edwards, A geomatics data integration technique for coastal change monitoring, Earth Surf. Process. Landforms 30 (2005) 651–664, https://doi.org/10.1002/esp.1165.

[10]

M.A. Marfai, H. Almohammad, S. Dey, B. Susanto, L. King, Coastal dynamic and shoreline mapping: multi-sources spatial data analysis in Semarang Indonesia, Environ. Monit. Assess. 142 (2008) 297–308, https://doi.org/10.1007/s10661-007-9929-2.

[11]

A. Mukhopadhyay, S. Mukherjee, S. Hazra, D. Mitra, others, Sea level rise and shoreline changes: a geoinformatic appraisal of Chandipur coast, Orissa, Int J Geol Earth Env. Sci. 1 (2011) 9–17.

[12]

N.N. Salghuna, S.A. Bharathvaj, Shoreline change analysis for northern part of the coromandel coast, Aquat. Procedia. 4 (2015) 317–324, https://doi.org/10.1016/j.aqpro.2015.02.043.

[13]

A.S. Rajawat, H.B. Chauhan, R. Ratheesh, S. Rode, R.J. Bhanderi, M. Mahapatra, M. Kumar, R. Yadav, S.P. Abraham, S.S. Singh, K.N. Keshri, Ajai, Assessment of coastal erosion along the Indian coast on 1: 25, 000 scale using satellite data of 1989-1991 and 2004-2006 time frames, Curr. Sci. 109 (2015) 347–353, https://doi.org/10.18520/cs/v109/i2/347-353.

[14]

K. Jayakumar, S. Malarvannan, Assessment of shoreline changes over the northern Tamil Nadu coast, south India using WebGIS techniques, J. Coast Conserv. 20 (2016) 477–487, https://doi.org/10.1007/s11852-016-0461-9.

[15]

Nithu Raj, B. Gurugnanam, V. Sudhakar, P. Glitson Francis, Estuarine shoreline change analysis along the Ennore river mouth, south east coast of India, using digital shoreline analysis system, Geod. Geodyn. 10 (2019) 205–212, https://doi.org/10.1016/j.geog.2019.04.002.

[16]

G. Muthusankar, M.P. Jonathan, C. Lakshumanan, P.D. Roy, K. Srinivasa-Raju, Coastal erosion vs man-made protective structures: evaluating a two-decade history from southeastern India, Nat. Hazards 85 (2017) 637–647, https://doi.org/10.1007/s11069-016-2583-7.

[17]

K. Appeaning Addo, M. Walkden, J.P. Mills, Detection, measurement and prediction of shoreline recession in Accra, Ghana, ISPRS J. Photogramm, Rem. Sens. 63 (2008) 543–558, https://doi.org/10.1016/j.isprsjprs.2008.04.001.

[18]

A.G. Al-Zubieri, I.M. Ghandour, R.A. Bantan, A.S. Basaham, Shoreline evolution between Al lith and ras mahāsin on the red sea coast, Saudi arabia using GIS and DSAS techniques, J. Indian Soc. Remote Sens. 48 (2020) 1455–1470, https://doi.org/10.1007/s12524-020-01169-6.

[19]

S. Roy, M. Mahapatra, A. Chakraborty, Shoreline change detection along the coast of Odisha, India using digital shoreline analysis system, Spat. Inf. Res. 26 (2018) 563–571, https://doi.org/10.1007/s41324-018-0199-6.

[20]

D. Ciritci, T. Türk, Automatic detection of shoreline change by geographical information system (GIS) and remote sensing in the göksu delta, Turkey, J. Indian Soc. Remote Sens. 47 (2019) 233–243, https://doi.org/10.1007/s12524-019-00947-1.

[21]

R. Baral, S. Pradhan, R.N. Samal, S.K. Mishra, Shoreline change analysis at chilika lagoon coast, India using digital shoreline analysis system, J. Indian Soc. Remote Sens. 46 (2018) 1637–1644, https://doi.org/10.1007/s12524-018-0818-7.

[22]

L. Chen, X. Wang, X. Cai, C. Yang, X. Lu, Seasonal variations of daytime land surface temperature and their underlying drivers over Wuhan, China, Rem. Sens. 13 (2021) 1–22, https://doi.org/10.3390/rs13020323.

[23]

D. Yan, X. Yao, J. Li, L. Qi, Z. Luan, Shoreline change detection and forecast along the yancheng coast using a digital shoreline analysis system, Wetlands 41 (2021) 47, https://doi.org/10.1007/s13157-021-01444-3.

[24]

K. Nassar, W.E. Mahmod, H. Fath, A. Masria, K. Nadaoka, A. Negm, Shoreline change detection using DSAS technique: case of North Sinai coast, Egypt, Mar. Georesour. Geotechnol. 37 (2019) 81–95, https://doi.org/10.1080/1064119X.2018.1448912.

[25]
E.R. Thieler, E.A. Himmelstoss, J.L. Zichichi, A. Ergul, The Digital Shoreline Analysis System (DSAS) Version 4.0 - an ArcGIS Extension for calculating shoreline change, Reston, VA, 2009, https://doi.org/10.3133/ofr20081278.
[26]

S. Maiti, A.K. Bhattacharya, Shoreline change analysis and its application to prediction: a remote sensing and statistics based approach, Mar. Geol. 257 (2009) 11–23, https://doi.org/10.1016/j.margeo.2008.10.006.

[27]

J.C. Allan, P.D. Komar, G.R. Priest, Shoreline variability on the high-energy Oregon coast and its usefulness in erosion-hazard assessments, J. Coast Res. 83–105 (2003). http://www.jstor.org/stable/25736601.

[28]
E.A. Himmelstoss, R.E. Henderson, M.G. Kratzmann, A.S. Farris, Digital Shoreline Analysis System (DSAS) version 5.0 user Guide, 2018, https://doi.org/10.3133/ofr20181179. Reston, vol. A.
[29]

B.T. San, U.D. Ulusar, An approach for prediction of shoreline with spatial uncertainty mapping (SLiP-SUM), Int. J. Appl. Earth Obs. Geoinf. 73 (2018) 546–554, https://doi.org/10.1016/j.jag.2018.08.005.

[30]

F.E. Jonah, I. Boateng, A. Osman, M.J. Shimba, E.A. Mensah, K. Adu-Boahen, E.O. Chuku, E. Effah, Shoreline change analysis using end point rate and net shoreline movement statistics: an application to Elmina, Cape Coast and Moree section of Ghana's coast, Reg. Stud. Mar. Sci. 7 (2016) 19–31, https://doi.org/10.1016/j.rsma.2016.05.003.

[31]

X. Zhang, Z. Yang, Y. Zhang, Y. Ji, H. Wang, K. Lv, Z. Lu, Spatial and temporal shoreline changes of the southern yellow river (huanghe) delta in 1976–2016, mar, Geol. 395 (2018) 188–197, https://doi.org/10.1016/j.margeo.2017.10.006.

[32]

G. Qiao, H. Mi, W. Wang, X. Tong, Z. Li, T. Li, S. Liu, Y. Hong, 55-year (1960–2015) spatiotemporal shoreline change analysis using historical DISP and Landsat time series data in Shanghai, Int. J. Appl. Earth Obs. Geoinf. 68 (2018) 238–251, https://doi.org/10.1016/j.jag.2018.02.009.

[33]

Y. Fan, S. Chen, B. Zhao, S. Pan, C. Jiang, H. Ji, Shoreline dynamics of the active Yellow River delta since the implementation of Water-Sediment Regulation Scheme: a remote-sensing and statistics-based approach, Estuar. Coast Shelf Sci. 200 (2018) 406–419, https://doi.org/10.1016/j.ecss.2017.11.035.

[34]

D. Ciritci, T. Türk, Assessment of the Kalman filter-based future shoreline prediction method, Int. J. Environ. Sci. Technol. 17 (2020) 3801–3816, https://doi.org/10.1007/s13762-020-02733-w.

[35]

L. Natarajan, N. Sivagnanam, T. Usha, L. Chokkalingam, S. Sundar, M. Gowrappan, P.D. Roy, Shoreline changes over last five decades and predictions for 2030 and 2040: a case study from Cuddalore, southeast coast of India, Earth Sci. Informatics 14 (2021) 1315–1325, https://doi.org/10.1007/s12145-021-00668-5.

[36]

S. Kaliraj, N. Chandrasekar, N.S. Magesh, Impacts of wave energy and littoral currents on shoreline erosion/accretion along the south-west coast of Kanyakumari, Tamil Nadu using DSAS and geospatial technology, Environ. Earth Sci. 71 (2014) 4523–4542, https://doi.org/10.1007/s12665-013-2845-6.

[37]

S. Kaliraj, N. Chandrasekar, N.S. Magesh, Evaluation of coastal erosion and accretion processes along the southwest coast of Kanyakumari, Tamil Nadu using geospatial techniques, Arabian J. Geosci. 8 (2015) 239–253, https://doi.org/10.1007/s12517-013-1216-7.

[38]

M. Sheik, Chandrasekar, A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using digital shoreline analysis system, Geo Spatial Inf. Sci. 14 (2011) 282–293, https://doi.org/10.1007/s11806-011-0551-7.

[39]

S. Saravanan, N. Chandrasekar, Grain size analysis and depositional environment condition along the beaches between Ovari and Kanyakumari, Southern Tamilnadu Coast, India, Mar. Georesour. Geotechnol. 28 (2010) 288–302, https://doi.org/10.1080/1064119X.2010.514244.

[40]

S. Saravanan, N. Chandrasekar, V. Joevivek, Temporal and spatial variation in the sediment volume along the beaches between Ovari and Kanyakumari (SE India), Int. J. Sediment Res. 28 (2013) 384–395, https://doi.org/10.1016/S1001-6279(13)60048-7.

[41]

K. Manjulavani, V.M. Supriya, M. Suhrullekha, B. Harish, Detection of shoreline change using geo-spatial techniques along the coast between Kanyakumari and Tuticorin, IEEE Int. Conf. Power, Control. Signals Instrum. Eng. ICPCSI (2018) 2822–2825, https://doi.org/10.1109/ICPCSI.2017.8392235.

[42]

U. Natesan, A. Parthasarathy, R. Vishnunath, G.E.J. Kumar, V.A. Ferrer, Monitoring longterm shoreline changes along Tamil Nadu, India using geospatial techniques, Aquat. Procedia. 4 (2015) 325–332, https://doi.org/10.1016/j.aqpro.2015.02.044.

[43]

A. Jutla, A.S. Akanda, A. Huq, A.S.G. Faruque, R. Colwell, S. Islam, A water Marker monitored by satellites to predict seasonal endemic cholera, Remote Sens. Lett. 4 (2013) 822–831, https://doi.org/10.1080/2150704X.2013. 802097.

[44]

M.R.I. Baig, I.A. Ahmad, M. Tayyab Shahfahad, A. Rahman, Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS), Spatial Sci. 26 (2020) 361–376, https://doi.org/10.1080/19475683.2020.1815839.

[45]

M. Mishra, P. Chand, N. Pattnaik, D.B. Kattel, G.K. Panda, M. Mohanti, U.D. Baruah, S.K. Chandniha, S. Achary, T. Mohanty, Response of long- to short-term changes of the Puri coastline of Odisha (India) to natural and anthropogenic factors: a remote sensing and statistical assessment, Environ. Earth Sci. 78 (2019) 1–23, https://doi.org/10.1007/s12665-019-8336-7.

[46]

A. Masria, K. Nadaoka, A. Negm, M. Iskander, Detection of shoreline and land cover changes around Rosetta Promontory, Egypt, based on remote sensing analysis, Land 4 (2015) 216–230, https://doi.org/10.3390/land4010216.

[47]
S.L. Charatkar, D. Mitra, R.S. Biradar, K.V. Radhakrishnan, A study of erosion and accretion along Gulf of Khambat, Gujarat coast using remote sensing and GIS. AFITA/WCCA, in: Jt. Congr. Agric, Bangkok, Thail., 2004, pp. 574–589.
[48]

I. Sekovski, F. Stecchi, F. Mancini, L. Del Rio, Image classification methods applied to shoreline extraction on very high-resolution multispectral imagery, Int. J. Rem. Sens. 35 (2014) 3556–3578, https://doi.org/10.1080/01431161. 2014.907939.

[49]

R. Dolan, M.S. Fenster, S.J. Holme, Temporal analysis of shoreline recession and accretion, J. Coast Res. 7 (1991) 723–744.

[50]

B.C. Douglas, M. Crowell, Long-term shoreline position prediction and error propagation, J. Coast Res. 16 (2000) 145–152.

[51]

I. Bagdanavičiute, L. Kelpšaite, D. Daunys, Assessment of shoreline changes along the Lithuanian Baltic Sea coast during the period 1947-2010, Baltica 25 (2012) 171–184, https://doi.org/10.5200/baltica.2012.25.17.

[52]

M. Mahapatra, R. Ratheesh, A.S. Rajawat, Shoreline change analysis along the coast of south Gujarat, India, using digital shoreline analysis system, J. Indian Soc. Remote Sens. 42 (2014) 869–876, https://doi.org/10.1007/s12524-013- 0334-8.

[53]

S. Velsamy, G. Balasubramaniyan, B. Swaminathan, D. Kesavan, Multi-decadal shoreline change analysis in coast of Thiruchendur Taluk, Thoothukudi district, Tamil Nadu, India, using remote sensing and DSAS techniques, Arabian J. Geosci. 13 (2020) 1–12, https://doi.org/10.1007/s12517-020-05800-1.

[54]

M. Esmail, W.E. Mahmod, H. Fath, Assessment and prediction of shoreline change using multi-temporal satellite images and statistics: case study of Damietta coast, Egypt, Appl. Ocean Res. 82 (2019) 274–282, https://doi.org/10.1016/j.apor.2018.11.009.

[55]

J.W. Long, N.G. Plant, Extended Kalman Filter framework for forecasting shoreline evolution, Geophys, Res. Lett. 39 (2012) 1–6, https://doi.org/10.1029/2012GL052180.

[56]

G. Kavitha, The threatening coastal erosion in the westcoast villages of Kanyakumari district, john found, J. EduSpark Int. J. Multidiscip. Res. Stud. 1 (2019) 12–23.

[57]

C. Hentry, N. Chandrasekar, S. Saravanan, J.D. Sahayam, Influence of geomorphology and bathymetry on the effects of the 2004 tsunami at Colachel, South India, Bull. Eng. Geol. Environ. 69 (2010) 431–442, https://doi.org/10.1007/s10064-010-0303-1.

[58]

V. Joevivek, S. Saravanan, N. Chandrasekar, Assessing the shoreline trend changes in Southern tip of India, J. Coast Conserv. 23 (2019) 283–292, https://doi.org/10.1007/s11852-018-0657-2.

Geodesy and Geodynamics
Pages 585-594
Cite this article:
Chrisben Sam S, Gurugnanam B. Coastal transgression and regression from 1980 to 2020 and shoreline forecasting for 2030 and 2040, using DSAS along the southern coastal tip of Peninsular India. Geodesy and Geodynamics, 2022, 13(6): 585-594. https://doi.org/10.1016/j.geog.2022.04.004
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return