PDF (9.1 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Open Access

Spatiotemporal detection of land use/land cover changes and land surface temperature using Landsat and MODIS data across the coastal Kanyakumari district, India

Centre for Applied Geology, The Gandhigram Rural Institute Deemed to Be University, Dindigul, Tamil Nadu, India
Show Author Information

Abstract

This study assesses the changes in land use/land cover (LULC) and land surface temperature (LST) to identify their impacts from 2000 to 2020 along the coast of Kanyakumari district, India using remote sensing techniques. Landsat images are used to estimate the LULC changes and the MODIS data for LST. The Maximum Likelihood Classification (MLC) method is used, and the LULC is classified into six categories: Agriculture Land, Barren Land, Salt Pan, Sandy Beach, Settlement, and Waterbody. Within the two decades of the present change detection study, upheave in the Settlement area of 49.89% is noticed, and the Agriculture Land is exploited by 20.09%. Salt Pan emits a high LST of 31.57 ℃, and the Waterbodies are noticed with a low LST of 28.9 ℃. However, the overall rate of LST decreased by 0.56 ℃ during this period. This study will help policymakers make appropriate planning and management to overcome the impact of LULC and LST in the forthcoming years.

References

[1]

G. Chaudhuri, N.B. Mishra, Spatio-temporal dynamics of land cover and land surface temperature in Ganges-Brahmaputra delta: a comparative analysis between India and Bangladesh, Appl. Geogr. 68 (2016) 68–83, https://doi.org/10.1016/j.apgeog.2016.01.002.

[2]

T. Lakshmi Prasad, G. Sreenivasulu, Land use/land cover analysis using remote sensing and gis, a case study on pulivendula taluk, Kadapa district, Andhra Pradesh, India, Int. J. Sci. Res. Publ. 4 (2014) 2250–3153.

[3]

J. John, N.R. Chithra, S.G. Thampi, Assessment of land surface temperature dynamics over the Bharathapuzha River Basin, India, Acta Geophys. (2021), https://doi.org/10.1007/s11600-021-00593-7.

[4]

M.S. Mondal, N. Sharma, P.K. Garg, M. Kappas, Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results, Egypt. J. Remote Sens. Space Sci. 19 (2016) 259–272, https://doi.org/10.1016/j.ejrs.2016.08.001.

[5]

E.-S.E. Omran, Detection of land-use and surface temperature change at different resolutions, J. Geogr. Inf. Syst. 4 (2012) 189–203, https://doi.org/10.4236/jgis.2012.43024.

[6]

N. Sajikumar, R.S. Remya, Impact of land cover and land use change on runoff characteristics, J. Environ. Manag. 161 (2015) 460–468, https://doi.org/10.1016/j.jenvman.2014.12.041.

[7]

M. Almazroui, A. Mashat, M.E. Assiri, M.J. Butt, Application of landsat data for urban growth monitoring in Jeddah, Earth Syst. Environ. 1 (2017) 1–11, https://doi.org/10.1007/s41748-017-0028-4.

[8]

R. Bhagyanagar, B.M. Kawal, G.S. Dwarakish, S. Surathkal, Land use/land cover change and urban expansion during 1983-2008 in the coastal area of Dakshina Kannada district, South India, J. Appl. Remote Sens. 6 (2012), https://doi.org/10.1117/1.jrs.6.063576, 063576–1.

[9]

Z. Zhang, S. Liu, J. Wei, J. Xu, W. Guo, W. Bao, Z. Jiang, Mass change of glaciers in Muztag Ata-Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as derived from remote sensing data, PLoS One 11 (2016) 1–18, https://doi.org/10.1371/journal.pone.0147327.

[10]

M. Kumar, I. Mondal, Q.B. Pham, Monitoring forest landcover changes in the Eastern Sundarban of Bangladesh from 1989 to 2019, Acta Geophys. 69 (2021) 561–577, https://doi.org/10.1007/s11600-021-00551-3.

[11]

A. Al Kafy, S. Rahman, M. Islam, A. Al Rakib, A. Islam, H.H. Khan, S. Sikdar, H.S. Sarker, J. Mawa, G.S. Sattar, Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh, Sustain. Cities Soc. (2020), 102542, https://doi.org/10.1016/j.scs.2020.102542.

[12]

K. Islam, M. Jashimuddin, B. Nath, T.K. Nath, Land use classification and change detection by using multi-temporal remotely sensed imagery: the case of Chunati wildlife sanctuary, Bangladesh, Egypt. J. Remote Sens. Space Sci. 21 (2018) 37–47, https://doi.org/10.1016/j.ejrs.2016.12.005.

[13]

I.R. Hegazy, M.R. Kaloop, Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt, Int. J. Sustain. Built Environ. 4 (2015) 117–124, https://doi.org/10.1016/j.ijsbe.2015.02.005.

[14]
I. Mondal, S. Thakur, P. Ghosh, T.K. De, Assessing the impacts of global sea level rise (SLR) on the mangrove forests of Indian Sundarbans using geospatial technology, in: Geographic Information Science for Land Resource Management, John Wiley & Sons, Ltd, 2021, pp. 209–227, https://doi.org/10.1002/9781119786375.ch11.
[15]

S. Thakur, I. Mondal, S. Bar, S. Nandi, P.B. Ghosh, P. Das, T.K. De, Shoreline changes and its impact on the mangrove ecosystems of some islands of Indian Sundarbans, North-East coast of India, J. Clean. Prod. 284 (2021), https://doi.org/10.1016/j.jclepro.2020.124764.

[16]

S. Das, R. Sarkar, Predicting the land use and land cover change using Markov model: a catchment level analysis of the Bhagirathi-Hugli River, Spatial Inf. Res. 27 (2019) 439–452, https://doi.org/10.1007/s41324-019-00251-7.

[17]

M.J.M. Cheema, W.G.M. Bastiaanssen, Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis, Agric. Water Manag. 97 (2010) 1541–1552, https://doi.org/10.1016/j.agwat.2010.05.009.

[18]

J. Tan, D. Yu, Q. Li, X. Tan, W. Zhou, Spatial relationship between land-use/land-cover change and land surface temperature in the Dongting Lake area, China, Sci. Rep. 10 (2020) 1–9, https://doi.org/10.1038/s41598-020-66168-6.

[19]

B.J.B. Zoungrana, C. Conrad, L.K. Amekudzi, M. Thiel, E.D. Da, G. Forkuor, F. Löw, Multi-temporal landsat images and ancillary data for land use/cover change (LULCC) detection in the Southwest of Burkina Faso, West Africa, Rem. Sens. 7 (2015) 12076–12102, https://doi.org/10.3390/rs70912076.

[20]

M. Cai, C. Ren, Y. Xu, K.K.L. Lau, R. Wang, Investigating the relationship between local climate zone and land surface temperature using an improved WUDAPT methodology - a case study of Yangtze River Delta, China, Urban Clim. 24 (2018) 485–502, https://doi.org/10.1016/j.uclim.2017.05.010.

[21]

H. Ding, W. Shi, Land-use/land-cover change and its influence on surface temperature: a case study in Beijing City, Int. J. Rem. Sens. 34 (2013) 5503–5517, https://doi.org/10.1080/01431161.2013.792966.

[22]

M.S. Khan, S. Ullah, T. Sun, A.U. Rehman, L. Chen, Land-use/land-cover changes and its contribution to urban heat Island: a case study of Islamabad, Pakistan, Sustainability 12 (2020), https://doi.org/10.3390/su12093861.

[23]
C.B. Karakuş, The impact of land use/land cover (LULC) changes on land surface temperature in Sivas city center and its Surroundings and assessment of urban heat Island, 2019, pp. 669–684.
[24]

C.K. Borges, R.M. de Medeiros, R.E.P. Ribeiro, É.G. dos Santos, R.G. Carneiro, C.A.C. dos Santos, Study of biophysical parameters using remote sensing techniques to Quixeré-CE region, J. Hyperspectral Remote Sens. 6 (2016) 283–294, https://doi.org/10.5935/2237-2202.20160028.

[25]

B. Ahmed, M.D. Kamruzzaman, X. Zhu, M.D. Shahinoor Rahman, K. Choi, Simulating land cover changes and their impacts on land surface temperature in dhaka, Bangladesh, Rem. Sens. 5 (2013) 5969–5998, https://doi.org/10.3390/rs5115969.

[26]

Z. Zhang, G. He, Generation of Landsat surface temperature product for China, 2000-2010, Int. J. Rem. Sens. 34 (2013) 7369–7375, https://doi.org/10.1080/01431161.2013.820368.

[27]

G.T. Ayele, A.K. Tebeje, S.S. Demissie, M.A. Belete, M.A. Jemberrie, W.M. Teshome, D.T. Mengistu, E.Z. Teshale, Time series land cover mapping and change detection analysis using geographic information system and remote sensing, Northern Ethiopia, Air Soil. Water Res. 11 (2018), https://doi.org/10.1177/1178622117751603.

[28]

H. hc, G. S, L. Srikanth, H. Surendra, Prioritization of sub-watersheds of the Kanakapura Watershed in the Arkavathi river basin, Karnataka, India- using remote sensing and GIS, Geol., Ecol., Landscapes 5 (2020) 149–160, https://doi.org/10.1080/24749508.2020.1846841.

[29]
I. Mondal, S. Thakur, P. Ghosh, T.K. De, J. Bandyopadhyay, Land Use/land Cover Modeling of Sagar Island, India Using Remote Sensing and GIS Techniques, Springer Singapore, 2019, https://doi.org/10.1007/978-981-13-1951-8_69.
[30]
G. Techniques, A.A. Gazi, I. Mondal, Urban heat Island and its effect on Dweller of Kolkata metropolitan area using International Journal of computer Sciences and Engineering open access urban heat Island and its effect on Dweller of Kolkata metropolitan area using geospatial techniques, 2018, https://doi.org/10.26438/ijcse/v6i10.741753.
[31]

C. Chew, R. Shah, C. Zuffada, G. Hajj, D. Masters, A.J. Mannucci, Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission, Geophys. Res. Lett. 43 (2016) 3317–3324, https://doi.org/10.1002/2016GL068189.

[32]

M.S. Saleem, S.R. Ahmad, Shafiq-Ur-Rehman, M.A. Javed, Impact assessment of urban development patterns on land surface temperature by using remote sensing techniques: a case study of Lahore, Faisalabad and Multan district, Environ. Sci. Pollut. Control Ser. 27 (2020) 39865–39878, https://doi.org/10.1007/s11356-020-10050-5.

[33]

M. Aboelnour, B.A. Engel, Application of remote sensing techniques and geographic information Systems to analyze land surface temperature in response to land use/land cover change in greater Cairo region, Egypt, J. Geogr. Inf. Syst. 10 (2018) 57–88, https://doi.org/10.4236/jgis.2018.101003.

[34]

S.M. Malik, S. Arshad, K. Alam, O. Bilal, Monitoring urban growth and land use changes using gis and remote sensing: a case study of tehsil burewala, J. Himal. Earth Sci. 53 (2020) 140–152.

[35]

S. Thakur, D. Maity, I. Mondal, G. Basumatary, P.B. Ghosh, P. Das, T.K. De, Assessment of Changes in Land Use, Land Cover, and Land Surface Temperature in the Mangrove Forest of Sundarbans, Northeast Coast of India, Environ. Dev. Sustain. 23 (2021) 1917–1943, https://doi.org/10.1007/s10668-020-00656-7.

[36]

N. Pepin, H. Deng, H. Zhang, F. Zhang, S. Kang, T. Yao, An Examination of temperature trends at high Elevations across the Tibetan plateau: the use of MODIS LST to understand patterns of Elevation-Dependent Warming, J. Geophys. Res. Atmos. 124 (2019) 5738–5756, https://doi.org/10.1029/2018JD029798.

[37]

S. Prakash, H. Norouzi, Land surface temperature variability across India: a remote sensing satellite perspective, Theor. Appl. Climatol. 139 (2020) 773–784, https://doi.org/10.1007/s00704-019-03010-8.

[38]

A.S. Alademomi, C.J. Okolie, O.E. Daramola, R.O. Agboola, T.J. Salami, Assessing the relationship of LST, NDVI and EVI with land cover changes in the Lagos Lagoon environment, Quaest. Geogr. 39 (2020) 87–109, https://doi.org/10.2478/quageo-2020-0025.

[39]

J. John, G. Bindu, B. Srimuruganandam, A. Wadhwa, P. Rajan, Land use/land cover and land surface temperature analysis in Wayanad district, India, using satellite imagery, Spatial Sci. 26 (2020) 343–360, https://doi.org/10.1080/19475683.2020.1733662.

[40]

P. Liu, S. Jia, R. Han, Y. Liu, X. Lu, H. Zhang, RS and GIS Supported urban LULC and UHI change Simulation and assessment, J. Sens. (2020) 2020, https://doi.org/10.1155/2020/5863164.

[41]

S. Kaliraj, N. Chandrasekar, K.K. Ramachandran, Mapping of coastal landforms and volumetric change analysis in the south west coast of Kanyakumari, South India using remote sensing and GIS techniques, Egypt. J. Remote Sens. Space Sci. 20 (2017) 265–282, https://doi.org/10.1016/j.ejrs.2016.12.006.

[42]

S.K.W. Akram, I. Mondal, J. Bandyopadhyay, Crop suitability analysis in water resource management of Paschim Medinipur District, India : a remote sensing approach, Sustain. Water Resour. Manage. 5 (2019) 797–815, https://doi.org/10.1007/s40899-018-0262-4.

[43]

S. Sinha, L. Kant, M. Singh, Improved Land-use/Land-cover classification of semi-arid deciduous forest landscape using thermal remote sensing, Egypt. J. Remote Sens. Space Sci. 18 (2015) 217–233, https://doi.org/10.1016/j.ejrs.2015.09.005.

[44]

P.K. Soni, N. Rajpal, R. Mehta, V.K. Mishra, Urban land cover and land use classification using multispectral sentinal-2 imagery, Multimed. Tool. Appl. (2021), https://doi.org/10.1007/s11042-021-10991-0.

[45]

G.M. Foody, Status of land cover classification accuracy assessment, Remote Sens. Environ. 80 (2002) 185–201, https://doi.org/10.1016/S0034-4257(01)00295-4.

[46]

R.G. Pontius, M. Millones, Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment, Int. J. Rem. Sens. 32 (2011) 4407–4429, https://doi.org/10.1080/01431161.2011.552923.

[47]
O. Elsaid, A. Abdelkareem, Accuracy Assessment of Land Use Land Cover in Umabdalla Natural Reserved Accuracy Assessment of Land Use Land Cover in Umabdalla Natural Reserved Forest, South Kordofan, Sudan, 2018.
[48]

X. Li, Y. Zhou, G.R. Asrar, Z. Zhu, Creating a seamless 1 km resolution daily land surface temperature dataset for urban and surrounding areas in the conterminous United States, Remote Sens. Environ. 206 (2018) 84–97, https://doi.org/10.1016/j.rse.2017.12.010.

[49]

M.G. Bosilovich, A comparison of MODIS land surface temperature with in situ observations, Geophys. Res. Lett. 33 (2006) 1–5, https://doi.org/10.1029/2006GL027519.

[50]

S. Mal, S. Rani, P. Maharana, Estimation of spatio-temporal variability in land surface temperature over the Ganga River Basin using MODIS data Estimation of spatio-temporal variability in land surface temperature over the Ganga River Basin using MODIS data, Geocarto Int. (2021) 1–23, https://doi.org/10.1080/10106049.2020.1869331.

[51]

S. Kaliraj, N. Chandrasekar, K.K. Ramachandran, Y. Srinivas, S. Saravanan, Coastal landuse and land cover change and transformations of Kanyakumari coast, India using remote sensing and GIS, Egypt. J. Remote Sens. Space Sci. 20 (2017) 169–185, https://doi.org/10.1016/j.ejrs.2017.04.003.

[52]
J.R. Anderson, E.E. Hardy, J.T. Roach, R.E. Witmer, Land Use and Land Cover Classification System for Use with Remote Sensor Data, U S Geol Surv, Prof Pap. 2001, 1976.
[53]

M. Bokaie, M.K. Zarkesh, P.D. Arasteh, A. Hosseini, Assessment of urban heat Island based on the relationship between land surface temperature and land use/land cover in tehran, Sustain. Cities Soc. 23 (2016) 94–104, https://doi.org/10.1016/j.scs.2016.03.009.

[54]

L. Chen, X. Wang, X. Cai, C. Yang, X. Lu, Seasonal variations of daytime land surface temperature and their underlying drivers over Wuhan, China, Rem. Sens. 13 (2021) 1–22, https://doi.org/10.3390/rs13020323.

[55]

M.Y. Gazi, M.Z. Rahman, M.M. Uddin, F.M.A. Rahman, Spatio-temporal dynamic land cover changes and their impacts on the urban thermal environment in the Chittagong metropolitan area, Bangladesh, Geojournal 4 (2020), https://doi.org/10.1007/s10708-020-10178-4.

[56]

S. Guha, H. Govil, M. Besoya, An investigation on seasonal variability between LST and NDWI in an urban environment using Landsat satellite data, Geomatics, Nat. Hazards Risk 11 (2020) 1319–1345, https://doi.org/10.1080/19475705.2020.1789762.

[57]

W. Zhang, B. Huang, Land use optimization for a rapidly urbanizing city with regard to local climate change: Shenzhen as a case study, J. Urban Plann. Dev. 141 (2015), 5014007, https://doi.org/10.1061/(ASCE)UP.1943-5444.0000200.

[58]

M.S. Boori, K. Choudhary, R. Paringer, A. Kupriyanov, Eco-environmental quality assessment based on pressure-state-response framework by remote sensing and GIS, Remote Sens. Appl.: Society and Environment 23 (2021), 100530, https://doi.org/10.1016/j.rsase.2021.100530.

[59]

A. Balew, T. Korme, Monitoring land surface temperature in Bahir Dar city and its surrounding using Landsat images, Egypt. J. Remote Sens. Space Sci. 23 (2020) 371–386, https://doi.org/10.1016/j.ejrs.2020.02.001.

[60]

S. Roy, S. Pandit, E.A. Eva, M.S.H. Bagmar, M. Papia, L. Banik, T. Dube, F. Rahman, Razi MA, Examining the nexus between land surface temperature and urban growth in Chattogram Metropolitan Area of Bangladesh using long term Landsat series data, Urban Clim. 32 (2020), 100593, https://doi.org/10.1016/j.uclim.2020.100593.

[61]

M. Ramaiah, R. Avtar, M.M. Rahman, Land cover influences on LST in two proposed smart cities of India: comparative analysis using spectral indices, Land 9 (2020), https://doi.org/10.3390/LAND9090292.

[62]
C. TNSCCC, District Wise Climate Change Information for the State of Tamil Nadu Rainfall Projections for Kanyakumari, 2015.
Geodesy and Geodynamics
Pages 172-181
Cite this article:
Sam SC, Balasubramanian G. Spatiotemporal detection of land use/land cover changes and land surface temperature using Landsat and MODIS data across the coastal Kanyakumari district, India. Geodesy and Geodynamics, 2023, 14(2): 172-181. https://doi.org/10.1016/j.geog.2022.09.002
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return