PDF (36.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research paper | Open Access

The present-day kinematics of the Tianshan orogenic belt constrained by GPS velocities

Chong GuaBin Zhaoa()Tianchen ShengbWei Wanga()Dongzhen WangaDaiqin LiucJie LicPinji LvdXuejun Qiaoa
Key Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, Wuhan 430071, China
Qinghai Provincial Basic Surveying and Mapping Institute, Xining 810001, China
Urumqi Institute of Central Asia Earthquake, China Earthquake Administration, Urumqi 830011, China
Hubei Earthquake Administration, Wuhan 430071, China
Show Author Information

Abstract

Since the late Cenozoic, the reactivated Tianshan orogenic belt has accommodated crustal shortening exceeding 200 km, primarily due to the far-field effects of the India-Eurasia plate collision. However, the details of the strain partitioning in the Tianshan Mountain range remain elusive. We interpret a new compilation of GPS velocities covering the whole Tianshan range with a classic elastic block model. Compared to previous studies with a block modeling approach, the Tianshan orogenic belt is further subdivided into several blocks based on geological fault traces and a clustering analysis approach. In addition to obvious crustal shortening on the bounding thrust faults of the Tianshan, our inverted fault slip rates also reveal that faults within the Tianshan orogenic belt, such as the Nalati Fault and the southern margin of the Issyk-Kul Lake Fault, which plays a crucial role in accommodating the tectonic crustal shortening. In the 72°E−78°E region, the internal shortening rate within the mountain is approximately 5–7 mm/yr. Besides crustal shortening, strike-slip motion occurs on faults in the interior of the mountain range as well as in the foreland fold-and-thrust belts, especially in the southern margin of the Tianshan. These findings suggest that the crustal deformation in the Tianshan Mountain range is more complex than previously thought, and the oblique convergence between the Tarim Basin and the Tianshan probably results in both strike-slip and thrust motion.

References

[1]

V. Burtman, Structural geology of variscan tien Shan, ussr, Am. J. Sci. 275 (1975) 157-186.

[2]

M. Allen, B. Windley, C. Zhang, Palaeozoic collisional tectonics and magmatism of the Chinese tien Shan, Central Asia, Tectonophysics 220 (1–4) (1993) 89-115, https://doi.org/10.1016/0040-1951(93)90225-9.

[3]

J.P. Avouac, P. Tapponnier, M. Bai, et al., Active thrusting and folding along the northern tien Shan and late cenozoic rotation of the Tarim relative to dzungaria and Kazakhstan, J. Geophys. Res. Solid Earth 98 (B4) (1993) 6755-6804, https://doi.org/10.1029/92JB01963.

[4]

A. Yin, S. Nie, P. Craig, et al., Late cenozoic tectonic evolution of the southern Chinese tian Shan, Tectonics 17 (1) (1998) 1-27, https://doi.org/10.1029/97TC03140.

[5]

E. Sobel, J. Chen, R. Heermance, Late oligocene-early miocene initiation of shortening in the southwestern Chinese tian Shan: implications for neogene shortening rate variations, Earth Planet Sci. Lett. 247 (1–2) (2006) 70-81, https://doi.org/10.1016/j.epsl.2006.03.048.

[6]

V. Simonov, A. Mikolaichuk, S. Rasskazov, et al., Cretaceous-paleogene within-plate magmatism in central asia: data from the tien Shan basalts, Russ. Geol. Geophys. 49 (7) (2008) 520-533, https://doi.org/10.1016/j.rgg.2008.06.009.

[7]

P. Molnar, P. Tapponnier, Cenozoic tectonics of asia: effects of a continental collision: features of recent continental tectonics in asia can Be interpreted as results of the India-eurasia collision, Science 189 (4201) (1975) 419-426.

[8]

P. Tapponnier, P. Molnar, Active faulting and cenozoic tectonics of the tien Shan, Mongolia, and baykal regions, J. Geophys. Res. Solid Earth 84 (B7) (1979) 3425-3459, https://doi.org/10.1029/JB084iB07p03425.

[9]

G. Houseman, P. England, Crustal thickening versus lateral expulsion in the Indian-asian continental collision, J. Geophys. Res. Solid Earth 98 (B7) (1993) 12233-12249, https://doi.org/10.1029/93JB00443.

[10]

C. DeMets, R.G. Gordon, D. Argus, S. Stein, Current Plate motions, Geophys. J. Int. 101 (2) (1990) 425-478, https://doi.org/10.1111/j.1365-246X.1990.tb06579.x.

[11]

K.Y. Abdrakhmatov, S. Aldazhanov, B. Hager, et al., Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates, Nature 384 (1996) 450-453, https://doi.org/10.1038/384450a0.

[12]

Q. Wang, P.Z. Zhang, J.T. Freymueller, et al., Present-Day crustal deformation in China constrained by global positioning system measurements, Science 294 (5542) (2001) 574-577.

[13]

C. Reigber, G. Michel, R. Galas, et al., New space geodetic constraints on the distribution of deformation in central asia, Earth Planet Sci. Lett. 191 (1–2) (2001) 157-165, https://doi.org/10.1016/S0012-821X(01)00414-9.

[14]

E.T. Brown, D.L. Bourlès, G.M. Raisbeck, et al., Estimation of slip rates in the southern tien Shan using cosmic ray exposure dates of abandoned alluvial fans, Geol. Soc. Am. Bull. 110 (3) (1998) 377-386, https://doi.org/10.1130/0016-7606(1998)110<0377:EOSRIT>2.3.CO;2.

[15]

B. Burchfiel, E. Brown, D. Qidong, et al., Crustal shortening on the margins of the tien Shan, Xinjiang, China, Int. Geol. Rev. 41 (8) (1999) 665-700, https://doi.org/10.1080/00206819909465164.

[16]

V. Burtman, S. Skobelov, P. Molnar, Late cenozoic slip on the talas-fergana right-lateral fault, tien Shan, central asia, Geol. Soc. Am. Bull. 108 (8) (1996) 2, https://doi.org/10.1130/0016-7606(1996)108<1004:LCSOTT>2.3.CO.

[17]

S.C. Thompson, R.J. Weldon, C.M. Rubin, et al., Late quaternary slip rates across the central tien Shan, Kyrgyzstan, central asia, J. Geophys. Res. Solid Earth 107 (B9) (2002), https://doi.org/10.1029/2001JB000596. ETG 7-1-ETG 7-32.

[18]

Q.-d. Deng, Active tectonics and earthquake activities in China, Earth Sci. Front. 10 (1) (2003) 66 (in Chinese).

[19]

S. Mohadjer, T.A. Ehlers, R. Bendick, et al., A quaternary fault database for central asia, Nat. Hazards Earth Syst. Sci. 16 (2) (2016) 529-542.

[20]

Y. Pang, Stress evolution on major faults in tien Shan and implications for seismic hazard, J. Geodyn. 153–154 (2022), https://doi.org/10.1016/j.jog.2022.101939.

[21]

Q. Wang, G. Ding, X. Qiao, X. Wang, et al., Recent rapid shortening of crust across the tianshan mts. and relative motion of tectonic blocks in the north and south, Chin. Sci. Bull. 45 (2000) 1995-1999, https://doi.org/10.1007/BF02909695.

[22]
Z. Niu, The crustal deformation pattern in China inferred from global positionging system measurements, Huazhong University of Science and Technology, 2016.
[23]

S. Yang, J. Li, Q. Wang, The deformation pattern and fault rate in the tianshan mountains inferred from GPS observations, Sci. China Earth Sci. 51 (8) (2008) 1064-1080, https://doi.org/10.1007/s11430-008-0090-8.

[24]

A.V. Zubovich, X.-q. Wang, Y.G. Scherba, et al., GPS velocity field for the tien Shan and surrounding regions, Tectonics 29 (6) (2010), https://doi.org/10.1029/2010TC002772 n/a-n/a.

[25]

D.-Q. Liu, M. Liu, H.-T. Wang, et al., Slip rates and seismic moment deficits on major faults in the tianshan region, Chin. J. Geophys. 59 (5) (2016) 1647-1660.

[26]

S. Zhu, H.-B. Liang, W.-X. Wei, et al., Slip rates and seismic moment deficits on major faults in the Tianshan region[J], Seismol. Geol. 43 (1) (2021) 249-261.

[27]

Y. Li, M. Liu, M. Hao, et al., Active crustal deformation in the tian Shan region, vol. 811, Central Asia, Tectonophysics, 2021, https://doi.org/10.1016/j.tecto.2021.228868.

[28]

J. Li, Y. Yao, R. Li, S, et al., Present-Day strike-slip faulting and thrusting of the Kepingtage fold and thrust belt in southern tianshan: constraints from GPS observations, Geophys. Res. Lett. 49 (11) (2022), https://doi.org/10.1029/2022GL099105.

[29]

L. Freund, D. Barnett, A two-dimensional analysis of surface deformation due to dip-slip faulting, Bull. Seismol. Soc. Am. 66 (3) (1976) 667-675, https://doi.org/10.1785/BSSA0660030667.

[30]
B.J. Meade, B.H. Hager, The current distribution of deformation in the western tien Shan from block models constrained by geodetic data, 2001.
[31]

H. Wang, M. Liu, J. Cao, et al., Slip rates and seismic moment deficits on major active faults in mainland China, J. Geophys. Res. 116 (B2) (2011), https://doi.org/10.1029/2010JB007821.

[32]

W. Wang, X. Qiao, S. Yang, et al., Present-Day velocity field and block kinematics of Tibetan plateau from GPS measurements, Geophys. J. Int. 208 (2) (2017) 1088-1102, https://doi.org/10.1093/gji/ggw445.

[33]

J.P. Loveless, B.J. Meade, Partitioning of localized and diffuse deformation in the Tibetan plateau from joint inversions of geologic and geodetic observations, Earth Planet Sci. Lett. 303 (1–2) (2011) 11-24, https://doi.org/10.1016/j.epsl.2010.12.014.

[34]

J. Charvet, L. Shu, S. Laurent-Charvet, et al., Palaeozoic tectonic evolution of the tianshan belt, NW China, Sci. China Earth Sci. 54 (2011) 166-184, https://doi.org/10.1007/s11430-010-4138-1.

[35]

E. De Pelsmaeker, S. Glorie, M.M. Buslov, et al., Late-paleozoic emplacement and meso-cenozoic reactivation of the southern Kazakhstan granitoid basement, Tectonophysics 662 (2015) 416-433, https://doi.org/10.1016/j.tecto.2015.06.014.

[36]

J. Selander, M. Oskin, C. Ormukov, et al., Inherited strike-slip faults as an origin for basement-cored uplifts: example of the kungey and zailiskey ranges, northern tian Shan, Tectonics 31 (4) (2012), https://doi.org/10.1029/2011TC003002.

[37]

G. Campbell, R. Walker, K. Abdrakhmatov, et al., The dzhungarian fault: late quaternary tectonics and slip rate of a major right-lateral strike-slip fault in the northern tien Shan region, J. Geophys. Res. Solid Earth 118 (10) (2013) 5681-5698, https://doi.org/10.1002/jgrb.50367.

[38]

C. Wu, G. Wu, J. Shen, et al., The late-quaternary activity of the Nalati Fault and its implications for the crustal deformation in the interior of the tianshan mountains, Quat. Sci. 34 (2) (2014) 269-280.

[39]

C. Wu, W. Zheng, P. Zhang, et al., Oblique thrust of the Maidan Fault and late quaternary tectonic deformation in the southwestern tian Shan, northwestern China, Tectonics 38 (8) (2019) 2625-2645, https://doi.org/10.1029/2018TC005248.

[40]

M. Wang, Z.K. Shen, Present-Day crustal deformation of continental China derived from GPS and its tectonic implications, J. Geophys. Res. Solid Earth 125 (2) (2020), https://doi.org/10.1029/2019JB018774.

[41]

C. Wu, P. Zhang, Z. Zhang, et al., Slip partitioning and crustal deformation patterns in the tianshan orogenic belt derived from GPS measurements and their tectonic implications, Earth Sci. Rev. 238 (2023), https://doi.org/10.1016/j.earscirev.2023.104362.

[42]

R.W. Simpson, W. Thatcher, J.C. Savage, Using cluster analysis to organize and explore regional GPS velocities, Geophys. Res. Lett. 39 (18) (2012), https://doi.org/10.1029/2012GL052755.

[43]
T. Herring, R. King, S. McClusky, Introduction to GAMIT/GLOBK, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2010.
[44]

C. Kreemer, G. Blewitt, E.C. Klein, A geodetic plate motion and global strain rate model, G-cubed 15 (10) (2014) 3849-3889, https://doi.org/10.1002/2014GC005407.

[45]

M. Devachandra, B. Kundu, J. Catherine, et al., Global positioning system (GPS) measurements of crustal deformation across the frontal eastern himalayan syntaxis and seismic-hazard assessment, Bull. Seismol. Soc. Am. 104 (3) (2014) 1518-1524, https://doi.org/10.1785/0120130290.

[46]

P. Vernant, R. Bilham, W. Szeliga, et al., Clockwise rotation of the brahmaputra valley relative to India: tectonic convergence in the eastern himalaya, naga hills, and shillong plateau, J. Geophys. Res. Solid Earth 119 (8) (2014) 6558-6571, https://doi.org/10.1002/2014JB011196.

[47]

T.D. Gupta, F. Riguzzi, S. Dasgupta, et al., Kinematics and strain rates of the eastern himalayan syntaxis from new GPS campaigns in northeast India, Tectonophysics 655 (2015) 15-26, https://doi.org/10.1016/j.tecto.2015.04.017.

[48]

A. Marechal, S. Mazzotti, R. Cattin, et al., Evidence of interseismic coupling variations along the Bhutan himalayan arc from new GPS data, Geophys. Res. Lett. 43 (24) (2016), https://doi.org/10.1002/2016GL071163, 12,399-12,406.

[49]

B.J. Meade, J.P. Loveless, Block modeling with connected fault-network geometries and a linear elastic coupling estimator in spherical coordinates, Bull. Seismol. Soc. Am. 99 (6) (2009) 3124-3139, https://doi.org/10.1785/0120090088.

[50]

R. McCaffrey, Time-dependent inversion of three-component continuous gps for steady and transient sources in northern cascadia, Geophys. Res. Lett. 36 (7) (2009), https://doi.org/10.1029/2008GL036784.

[51]

M. d'Alessio, I. Johanson, R. Bürgmann, et al., Slicing up the San Francisco bay area: block kinematics and fault slip rates from GPS-derived surface velocities, J. Geophys. Res. Solid Earth 110 (B6) (2005), https://doi.org/10.1029/2004JB003496.

[52]

Q.-D. Deng, X.-Y. Feng, P.-Z. Zhang, et al., Reverse Fault and fold zone in the Urumqi range-front depression of the northern tianshan and its genetic mechanism, Earth Sci. Front. 6 (4) (1999) 191-201.

[53]

L. Jie, C. Gang, W.- X. W, et al., Characteristics of present-day tectonics movement of typical faults in northern Tianshan Mountain deduced from GPS observation, Acta Seismol. Sin. (Chin. Ed.) 38 (5) (2016) 751-760.

[54]

G.E. Campbell, R.T. Walker, K. Abdrakhmatov, et al., Rapid late quaternary slip, repeated prehistoric earthquake rupture, and widespread landsliding associated with the karakudzhur thrust, central Kyrgyz tien Shan, Tectonics 38 (11) (2019) 3740-3764, https://doi.org/10.1029/2018TC005433.

[55]

Y. Yao, S. Wen, L. Yang, et al., A shallow and left-lateral rupture event of the 2021 Mw 5.3 Baicheng earthquake: implications for the diffuse deformation of southern tianshan, Earth Space Sci. 9 (3) (2022), https://doi.org/10.1029/2021EA001995.

[56]
P. Molnar, W.-P. Chen, Seismicity and mountain building. Symposium on mountain building, 1983.
[57]

S. Ghose, M.W. Hamburger, C.J. Ammon, Source parameters of moderate-sized earthquakes in the tien Shan, central asia from regional moment tensor inversion, Geophys. Res. Lett. 25 (16) (1998) 3181-3184, https://doi.org/10.1029/98GL02362.

[58]

Y. Xu, S.W. Roecker, R. Wei, et al., Analysis of seismic activity in the crust from earthquake relocation in the central tien Shan, Bull. Seismol. Soc. Am. 96 (2) (2006) 737-744, https://doi.org/10.1785/0120030220.

[59]

H. Wang, Z. Li, C. Zhao, et al., Relocation of the Ms≥2.0 earthquakes in the northern tianshan region, Xinjiang, using double difference earthquake relocation algorithm, Earthq. Res. China 23 (2007) 47-55.

[60]

K.M. Johnson, J.i. Fukuda, New methods for estimating the spatial distribution of locked asperities and stress-driven interseismic creep on faults with application to the San Francisco bay area, California, J. Geophys. Res. 115 (B12) (2010), https://doi.org/10.1029/2010JB007703.

[61]

A. Mao, C.G. Harrison, T.H. Dixon, Noise in GPS coordinate time series, J. Geophys. Res. Solid Earth 104 (B2) (1999) 2797-2816, https://doi.org/10.1029/1998JB900033.

[62]
S.A. Turner, J.W. Cosgrove, J.G. Liu, Controls on lateral structural variability along the keping Shan thrust belt, SW Tien Shan Foreland 348 (1) (2010) 71-85, https://doi.org/10.1144/SP348.5. China, Geological Society, London, Special Publications.
[63]

S.A. Turner, J.G. Liu, J.W. Cosgrove, Structural evolution of the Piqiang Fault Zone, NW Tarim Basin, China, J. Asian Earth Sci. 40 (1) (2011) 394-402, https://doi.org/10.1016/j.jseaes.2010.06.005.

[64]

B.J. Meade, Present-Day kinematics at the India-asia collision zone, Geology 35 (1) (2007), https://doi.org/10.1130/G22924A.1.

[65]

X. Yang, Q. Deng, P. Zhang, et al., Crustal shortening of major nappe structures on the Front margins of the tianshan, Seismol. Geol. 30 (1) (2008) 111-131.

[66]

M.B. Allen, S.J. Vincent, P.J. Wheeler, Late cenozoic tectonics of the kepingtage thrust zone: interactions of the tien Shan and Tarim Basin, northwest China, Tectonics 18 (4) (1999) 639-654, https://doi.org/10.1029/1999TC900019.

[67]

T. Li, J. Chen, J.A. Thompson, et al., Equivalency of geologic and geodetic rates in contractional orogens: new insights from the Pamir frontal thrust, Geophys. Res. Lett. 39 (15) (2012), https://doi.org/10.1029/2012GL051782.

[68]

S. Barbot, Mantle flow distribution beneath the California margin, Nat. Commun. 11 (1) (2020) 4456, https://doi.org/10.1038/s41467-020-18260-8.

[69]

R. Lu, D. He, X. Xu, et al., Seismotectonics of the 2016 M 6.2 hutubi earthquake: implications for the 1906 M 7.7 Manas earthquake in the northern tian Shan belt, China, Seismol Res. Lett. 89 (1) (2018) 13-21, https://doi.org/10.1785/0220170123.

[70]

J. Qiu, G. Rao, X. Wang, et al., Effects of fault slip distribution on the geometry and kinematics of the southern Junggar foldfold-and-thrust belt, northern tian Shan, Tectonophysics 772 (2019) 228209, https://doi.org/10.1016/j.tecto.2019.228209.

[71]

Y. Yang, W.-Q. Yao, J.-J. Yan, et al., Mesozoic and cenozoic structural deformation in the nw Tarim Basin, China: a case study of the piqiang–selibuya fault, Int. Geol. Rev. 60 (7) (2018) 929-943, https://doi.org/10.1080/00206814.2017.1360803.

[72]

L. Wang, S. Barbot, Three-dimensional kinematics of the India-eurasia collision, Communications Earth & Environment 4 (1) (2023) 164, https://doi.org/10.1038/s43247-023-00815-4.

[73]

Y. Pan, R. Chen, S. Yi, et al., Contemporary Mountain-Building of the tianshan and its relevance to geodynamics constrained by integrating gps and grace measurements, J. Geophys. Res. Solid Earth 124 (11) (2019) 12171-12188, https://doi.org/10.1029/2019JB017566.

[74]

W. Li, Y. Chen, X. Yuan, et al., Intracontinental deformation of the tianshan orogen in response to India-asia collision, Nat. Commun. 13 (1) (2022) 3738, https://doi.org/10.1038/s41467-022-30795-6.

[75]

H. Li, G. Rao, J. Qiu, et al., The characteristics of active deformation and strain distribution in the eastern tian Shan, Geol. J. 55 (11) (2020) 7227-7238, https://doi.org/10.1002/gj.3886.

Geodesy and Geodynamics
Pages 543-553
Cite this article:
Gu C, Zhao B, Sheng T, et al. The present-day kinematics of the Tianshan orogenic belt constrained by GPS velocities. Geodesy and Geodynamics, 2024, 15(6): 543-553. https://doi.org/10.1016/j.geog.2024.04.004
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return