PDF (13.5 MB)
Collect
Submit Manuscript
Show Outline
Outline
Abstract
Keywords
References
Show full outline
Hide outline
Research paper | Open Access

Comparative analysis of recent hydrological models and an attempt to generate new combined products for monitoring terrestrial water storage change

Yang LuZhao Li()Qusen ChenMeilin HeZe WangJian WangWeiping Jiang
GNSS Research Center, Hubei Luojia Laboratory, Wuhan University, Wuhan 430079, China
Show Author Information

Abstract

Hydrological models are crucial for characterizing large-scale water quantity variations and correcting GNSS reference station vertical displacements. We evaluated the robustness of multiple models, such as the Global Land Data Assimilation System (GLDAS), the Famine Early Warning System Network Land Data Assimilation System (FLDAS), the National Centers for Environmental Prediction (NCEP), and the WaterGAP Global Hydrology Model (WGHM). Inter-model and outer comparisons with Global Positioning System (GPS) coordinate time series, satellite gravity field Mascon solutions, and Global Precipitation Climatology Centre (GPCC) guide our assessment. Results confirm WGHM's 26% greater effectiveness in correcting nonlinear variations in GPS height time series compared to NCEP. In the Amazon River Basin, a 5-month lag between FLDAS, GLDAS, and satellite gravity results is observed. In eastern Asia and Australia, NCEP's Terrestrial Water Storage Changes (TWSC)-derived surface displacements correlate differently with precipitation compared to other models. Three combined hydrological models (H-VCE, H-EWM, and H-CVM) utilizing Variance Component Estimation (VCE), Entropy Weight Method (EWM), and Coefficient of Variation Method (CVM) are formulated. Correcting nonlinear variations with combined models enhances global GPS height scatter by 15%–17%. Correlation with precipitation increases by 25%–30%, and with satellite gravity, rises from 0.2 to 0.8 at maximum. The combined model eliminates time lag in the Amazon Basin TWSC analysis, exhibiting a four times higher signal-to-noise ratio than single models. H-VCE demonstrates the highest accuracy. In summary, the combined hydrological model minimizes discrepancies among individual models, significantly improving accuracy for monitoring large-scale TWSC.

References

[1]

F. Pappenberger, K.J. Beven, M. Ratto, et al., Multi-method global sensitivity analysis of flood inundation models, Adv. Water Resour. 31 (1) (2008) 1-14.

[2]

D. Liu, S. Guo, Q. Shao, et al., Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions, J. Hydrol. 556 (2018) 759-774.

[3]

S.J. Wenger, C.H. Luce, A.F. Hamlet, et al., Macroscale hydrologic modeling of ecologically relevant flow metrics, Water Resour. Res. 46 (9) (2010).

[4]

K.E. Bennett, J.R. Urrego Blanco, A. Jonko, et al., Global sensitivity of simulated water balance indicators under future climate change in the Colorado Basin, Water Resour. Res. 54 (1) (2018) 132-149.

[5]

M. Rodell, P.R. Houser, U.E.A. Jambor, et al., The global land data assimilation system, Bull. Am. Meteorol. Soc. 85 (3) (2004) 381-394.

[6]

J. Sheffield, G. Goteti, E.F. Wood, Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling, J. Clim. 19 (13) (2006) 3088-3111.

[7]
M.M. Rienecker, M.J. Suarez, R. Todling, et al., The GEOS-5 data assimilation system-documentation of versions 5.0. 1, 5.1. 0, and 5.2. 0, NASA Tech Rep, 2008 104606.
[8]

R.H. Reichle, R.D. Koster, G.J.M. De Lannoy, et al., Assessment and enhancement of MERRA land surface hydrology estimates, J. Clim. 24 (24) (2011) 6322-6338.

[9]

R.H. Reichle, Q. Liu, R.D. Koster, et al., Land surface precipitation in MERRA-2, J. Clim. 30 (5) (2017) 1643-1664.

[10]
H. Hersbach, P. de Rosnay, B. Bell, et al., Operational global reanalysis: progress, future directions and synergies with NWP, 2018.
[11]

H.E. Beck, M. Pan, T. Roy, et al., Daily evaluation of 26 precipitation datasets using Stage-Ⅳ gauge-radar data for the CONUS, Hydrol. Earth Syst. Sci. 23 (1) (2019) 207-224.

[12]

M. Nogueira, Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: process-based analysis of systematic and random differences, J. Hydrol. 583 (2020) 124632.

[13]

K.E. Mitchell, D. Lohmann, P.R. Houser, et al., The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system, J. Geophys. Res. Atmos. 109 (D7) (2004).

[14]
B. Van den Hurk, ELDAS Final report, KNMI, ECMWF, 2005.
[15]

S. Sun, C. Shi, Y. Pan, et al., Applicability assessment of the 1998–2018 CLDAS multi-source precipitation fusion dataset over China, J. Meteorol. Res. 34 (4) (2020) 879-892.

[16]

R. Daley, Atmospheric data analysis, Cambridge university press., 1993.

[17]

R.E. Kalman, A new approach to linear filtering and prediction problems, J. Basic Eng. Trans. 82 (1960) 35-45.

[18]

Y. Sasaki, An objective analysis based on the variational method, J. Meteorol. Soc. of Japan. Ser. Ⅱ 36 (3) (1958) 77-88.

[19]

H. Gao, F. Zhao, A review of global hydrological models: the opportunities, challenges and outlook, J. Glaciol. Geocryol. 42 (1) (2020) 224-233.

[20]

H. Barkhordari, M. Nasseri, H. Rezazadeh, Possibility of global gridded streamflow dataset correction: applications of large-scale watersheds with different climates, Theor. Appl. Climatol. 152 (1) (2023) 627-647.

[21]

Z. Wu, H. Feng, H. He, et al., Evaluation of soil moisture climatology and anomaly components derived from ERA5-land and GLDAS-2.1 in China, Water Resour. Manag. 35 (2021) 629-643.

[22]

T. Van Dam, J. Wahr, P.C.D. Milly, et al., Crustal displacements due to continental water loading, Geophys. Res. Lett. 28 (4) (2001) 651-654.

[23]

T. Van Dam, J. Wahr, D. Lavallée, A comparison of annual vertical crustal displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe, J. Geophys. Res. Solid Earth 112 (B3) (2007).

[24]

P. Tregoning, C. Watson, G. Ramillien, et al., Detecting hydrologic deformation using GRACE and GPS, Geophys. Res. Lett. 36 (15) (2009).

[25]

M. Fritsche, P. Döll, R. Dietrich, Global-scale validation of model-based load deformation of the Earth's crust from continental watermass and atmospheric pressure variations using GPS, J. Geodyn. 59 (2012) 133-142.

[26]
Z. Li, T. van Dam, X. Collilieux, et al., Quality evaluation of the weekly vertical loading effects induced from continental water storage models, in: IAG 150 Years: proceedings of the IAG scientific assembly in postdam, Germany, 2013, Springer International Publishing, 2016, pp. 45-54.
[27]

Y. He, G. Nie, S. Wu, et al., Analysis and discussion on the optimal noise model of global GNSS long-term coordinate series considering hydrological loading, Rem. Sens. 13 (3) (2021) 431.

[28]

Y. Niu, N. Wei, M. Li, et al., Quantifying discrepancies in the three-dimensional seasonal variations between IGS station positions and load models, J. Geodesy 96 (4) (2022) 31.

[29]

U. Meyer, Y. Jean, A. Kvas, et al., Combination of GRACE monthly gravity fields on the normal equation level, J. Geodesy 93 (2019) 1645-1658.

[30]

H. Peter, U. Meyer, M. Lasser, et al., COST-G gravity field models for precise orbit determination of Low Earth Orbiting Satellites, Adv. Space Res. 69 (12) (2022) 4155-4168.

[31]

P. Rebischung, B. Garayt, Recent results from the IGS terrestrial frame combinations, Reference frames for applications in geosciences, Springer Berlin Heidelberg, 2013, pp. 69-74.

[32]

Z. Altamimi, P. Sillard, C. Boucher, ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications, J. Geophys. Res. Solid Earth 107 (B10) (2002). ETG 2-1-ETG 2-19.

[33]

Z. Altamimi, X. Collilieux, L. Métivier, ITRF2008: an improved solution of the international terrestrial reference frame, J. Geodesy 85 (2011) 457-473.

[34]

Z. Li, Y. Lu, W. Jiang, et al., A new combined terrestrial water storage change model based on GRACE satellite gravimetry, Geomatics Inf. Sci. Wuhan Univ. 48 (7) (2023) 1180-1191.

[35]

H. Chen, P. Chen, R. Wang, et al., Multi-source soil moisture data fusion based on spherical cap harmonic analysis and helmert variance component estimation in the western US, Sensors 23 (19) (2023) 8019.

[36]

W. Rao, W. Sun, Uplift of the Tibetan plateau: how to accurately compute the hydrological load effect? J. Geophys. Res. Solid Earth 127 (1) (2022) e2021JB022475.

[37]

R. Dill, Hydrological model LSDM for operational Earth rotation and gravity field variations, Sci. Tech. Rep. - Geoforsch. Potsdam (2008) 1-35.

[38]
Z. Li, T. van Dam, The phase 2 North America land data assimilation system (NLDAS-2) products for modeling water storage displacements for plate boundary observatory GPS stations, in: Refag 2014: proceedings of the IAG commission 1 symposium kirchberg, Luxembourg, 13-17 october, 2014, Springer International Publishing, 2017, pp. 217-225.
[39]

J. Wahr, M. Molenaar, F. Bryan, Time variability of the Earth's gravity field: hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res. Solid Earth 103 (B12) (1998) 30205-30229.

[40]

J. Kusche, Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field models, J. Geodesy 81 (11) (2007) 733-749.

[41]

V.G. Ferreira, C.E. Ndehedehe, H.C. Montecino, et al., Prospects for imaging terrestrial water storage in South America using daily GPS observations, Rem. Sens. 11 (6) (2019) 679.

[42]

J. Langbein, Noise in GPS displacement measurements from southern California and southern Nevada, J. Geophys. Res. Solid Earth 113 (B5) (2008).

[43]

D. Fuchu, C.F. Lee, W. Sijing, Analysis of rainstorm-induced slide-debris flows on natural terrain of Lantau Island, Hong Kong, Eng. Geol. 51 (4) (1999) 279-290.

[44]

X. Li, B. Zhong, J. Li, et al., Joint inversion of GNSS and GRACE/GFO data for terrestrial water storage changes in the Yangtze River Basin, Geophys. J. Int. 233 (3) (2023) 1596-1616.

[45]

L. Ferreira, G.S. Marotta, E.H. Madden, et al., Vertical displacement caused by hydrological influence in the Amazon Basin, J. Geophys. Res. Solid Earth 126 (3) (2021) e2020JB020691.

[46]

Y.H. Xiong, H.L. Zhang, Correction of seasonal variation of GPS site vertical direction using GRACE, J. Geomatics 44 (6) (2019) 38-40.

[47]

J.L. Chen, C.R. Wilson, K.W. Seo, Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations, J. Geophys. Res. Solid Earth 111 (B6) (2006).

Geodesy and Geodynamics
Pages 616-626
Cite this article:
Lu Y, Li Z, Chen Q, et al. Comparative analysis of recent hydrological models and an attempt to generate new combined products for monitoring terrestrial water storage change. Geodesy and Geodynamics, 2024, 15(6): 616-626. https://doi.org/10.1016/j.geog.2024.04.008
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return