Global inland surface water bodies such as lakes and reservoirs, important components of the hydrosphere and ecosphere, are increasingly affected by climate change. Generating bathymetric volume-area-height (BVAH) curves for global inland surface water bodies can enhance our understanding of their topography and climate impacts. However, accurately quantifying the topographic patterns of these water bodies remains challenging due to the difficulties in collecting comprehensive bathymetric data. Therefore, we collected and processed over 2000 bathymetric maps of global water bodies from over 50 different data sources and then developed the BVAH model. Finally, the BVAH hydrological curves of 16671 global inland surface water bodies (larger than 10 km2) were generated. The results include but are not limited to (1) For most targeted water bodies, area (A) and volume (V) exhibit significant power function relationships with surface heights (H), with optimal power values quantified as 1.42 for A and 2.42 for V. (2) The BVAH model outperforms GLOBathy in estimating area and volume changes, achieving higher correlation coefficients (CC) of approximately 0.962 for the area and 0.991 for volume, and demonstrating lower percentages of root mean squared errors (PRMSE) around 10.9% for the area and 4.8% for volume. (3) In the case study of the Xizang Plateau and various large global reservoirs, the BVAH curve database can capture dynamic volume changes. As a unified simulation of the bathymetric topographical patterns, our bathymetric dataset and corresponding BVAH curve database have great potential to contribute to effective water resource management and ecological conservation efforts worldwide.
R.A. Kerr, Global warming is changing the world, Science 316 (2007) 188-190.
R. Lorenz, Z. Stalhandske, E.M. Fischer, Detection of a climate change signal in extreme heat, heat stress, and cold in Europe from observations, Geophys. Res. Lett. 46 (2019) 8363-8374.
S.N. Williamson, B. Menounos, The influence of forest fires aerosol and air temperature on glacier albedo, western North America, Rem. Sens. Environ. 267 (2021) 112732.
G. Di Baldassarre, N. Wanders, A. AghaKouchak, et al., Water shortages worsened by reservoir effects, Nat. Sustain. 1 (2018) 617-622.
L. Ji, P. Gong, J. Wang, et al., Construction of the 500-m resolution daily global surface water change database (2001–2016), Water Resour. Res. 54 (10) (2018) 270, 210,292.
M.L. Messager, B. Lehner, G. Grill, et al., Estimating the volume and age of water stored in global lakes using a geo-statistical approach, Nat. Commun. 7 (2016) 1-11.
R. Tortini, N. Noujdina, S. Yeo, et al., Satellite-based remote sensing data set of global surface water storage change from 1992 to 2018, Earth Syst. Sci. Data 12 (2020) 1141-1151.
J.-F. Pekel, A. Cottam, N. Gorelick, et al., High-resolution mapping of global surface water and its long-term changes, Nature 540 (2016) 418-422.
X. Wang, X. Xiao, Z. Zou, et al., Gainers and losers of surface and terrestrial water resources in China during 1989–2016, Nat. Commun. 11 (2020) 1-12.
C. Verpoorter, T. Kutser, D.A. Seekell, et al., A global inventory of lakes based on high-resolution satellite imagery, Geophys. Res. Lett. 41 (2014) 6396-6402.
D. Yamazaki, M.A. Trigg, D. Ikeshima, Development of a global~ 90 m water body map using multi-temporal Landsat images, Rem. Sens. Environ. 171 (2015) 337-351.
G. Zhang, T. Yao, C. Shum, et al., Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin, Geophys. Res. Lett. 44 (2017) 5550-5560.
W. Wan, L. Zhao, H. Xie, et al., Lake surface water temperature change over the Tibetan plateau from 2001 to 2015: a sensitive indicator of the warming climate, Geophys. Res. Lett. 45 (11) (2018) 177, 111,186.
X. Li, D. Long, Q. Huang, et al., High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions, Earth Syst. Sci. Data 11 (2019) 1603-1627.
S. Zhu, W. Wan, H. Xie, et al., An efficient and effective approach for georeferencing AVHRR and GaoFen-1 imageries using inland water bodies, IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 11 (2018) 2491-2500.
S. Zhu, B. Liu, W. Wan, et al., A new digital lake bathymetry model using the step-wise water recession method to generate 3D lake bathymetric maps based on DEMs, Water. 11 (2019) 1151.
Y. Li, H. Gao, G. Zhao, et al., A high-resolution bathymetry dataset for global reservoirs using multi-source satellite imagery and altimetry, Rem. Sens. Environ. 244 (2020) 111831.
K. Takeuchi, Least marginal environmental impact rule for reservoir development, Hydrol. Sci. J. 42 (1997) 583-597.
B. Lehner, P. Döll, Development and validation of a global database of lakes, reservoirs and wetlands, J. Hydrol. 296 (2004) 1-22.
B. Lehner, C.R. Liermann, C. Revenga, et al., High-resolution mapping of the world's reservoirs and dams for sustainable river-flow management, Front. Ecol. Environ. 9 (2011) 494-502.
H. Gao, C. Birkett, D.P. Lettenmaier, Global monitoring of large reservoir storage from satellite remote sensing, Water Resour. Res. 48 (2012).
C. Song, B. Huang, L. Ke, Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data, Rem. Sens. Environ. 135 (2013) 25-35.
H. Gao, Satellite remote sensing of large lakes and reservoirs: from elevation and area to storage, Wiley Interdiscipl. Rev.: Water 2 (2015) 147-157.
J.-F. Crétaux, R. Abarca-del-Río, M. Berge-Nguyen, et al., Lake volume monitoring from space, Surv. Geophys. 37 (2016) 269-305.
F. Yao, B. Livneh, B. Rajagopalan, et al., Satellites reveal widespread decline in global lake water storage, Science 380 (2023) 743-749.
F. Yao, J. Wang, K. Yang, et al., Lake storage variation on the endorheic Tibetan Plateau and its attribution to climate change since the new millennium, Environ. Res. Lett. 13 (2018) 064011.
B. Khazaei, L.K. Read, M. Casali, et al., GLOBathy, the global lakes bathymetry dataset, Sci. Data 9 (2022) 1-10.
W. Yigzaw, H.Y. Li, Y. Demissie, et al., A new global storage-area-depth data set for Modeling reservoirs in land surface and earth system models, Water Resour. Res. 54 (10) (2018) 372, 310,386.
K. Liu, C. Song, J. Wang, et al., Remote sensing-based modeling of the bathymetry and water storage for channel-type reservoirs worldwide, Water Resour. Res. 56 (2020) 1-19.
T. Kutser, J. Hedley, C. Giardino, et al., Remote sensing of shallow waters–A 50 year retrospective and future directions, Rem. Sens. Environ. 240 (2020) 111619.
G. Zhang, T. Bolch, T. Yao, et al., Underestimated mass loss from lake terminating glaciers in the greater Himalaya, Nat. Geosci. 16 (2023) 333-338.
J. Hou, A.I. Van Dijk, L.J. Renzullo, et al., GloLakes: water storage dynamics for 27000 lakes globally from 1984 to present derived from satellite altimetry and optical imaging, Earth Syst. Sci. Data. 16 (2024) 201-218.
C. Scholz, T. Moore Jr, D. Hutchinson, et al., Comparative sequence stratigraphy of low-latitude versus high-latitude lacustrine rift basins: seismic data examples from the East African and Baikal rifts, Palaeogeogr. 140 (1998) 401-420.
C.L. Erickson, Neo-environmental determinism and agrarian ‘collapse’in Andean prehistory, Antiquity. 73 (1999) 634-642.
M.V.S. Salvador, M.A.M. Silva, Morphology and sedimentology of the itaipú embayment-niterói/RJ, An Acad. Bras Ciências 74 (2002) 127-134.
J.Q. Yu, K.R. Kelts, Abrupt changes in climatic conditions across the late-glacial/Holocene transition on the NE Tibet-Qinghai Plateau: evidence from Lake Qinghai, China, J. Paleolimnol. 28 (2002) 195-206.
J. Naithani, E. Deleersnijder, P.-D. Plisnier, Analysis of wind-induced thermocline oscillations of Lake Tanganyika, Environ. Fluid Mech. 3 (2003) 23-39.
A. Rosentau, T. Hang, A. Miidel, Simulation of the shorelines of glacial lake peipsi in eastern Estonia during the late weichselian, Geol. Q. 48 (2004).
S.B. Awulachew, Investigation of physical and bathymetric characteristics of Lakes Abaya and Chamo, Ethiopia, and their management implications, Lakes Reservoirs Res. Manag. 11 (2006) 133-140.
A.R. Bos, C.K. Kapasa, P.A. van Zwieten, Update on the bathymetry of Lake Mweru (Zambia), with notes on water level fluctuations, Afr. J. Aquat. Sci. 31 (2006) 145-150.
R.P. Zolá, L. Bengtsson, Long-term and extreme water level variations of the shallow Lake Poopó, Bolivia, Hydrol. Sci. J. 51 (2006) 98-114.
H.F. Lamb, C.R. Bates, P.V. Coombes, et al., Late pleistocene desiccation of Lake tana, source of the blue nile, Quat. Sci. Rev. 26 (2007) 287-299.
C.H. Ryer, A review of flatfish behavior relative to trawls, Fish. Res. 90 (2008) 138-146.
J. Wang, L. Zhu, G. Daut, et al., Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China, Limnology 10 (2009) 149-158.
M. Brennwald, N. Vogel, Y. Scheidegger, et al., Noble gases as environmental tracers in sediment porewaters and stalagmite fluid inclusions, The Noble Gases as Geochem. Tracers. (2013) 123-153.
F. Fendereski, M. Vogt, M.R. Payne, et al., Biogeographic classification of the caspian sea, Biogeosciences 11 (2014) 6451-6470.
G.S. David, E.D.d. Carvalho, D. Lemos, et al., Ecological carrying capacity for intensive tilapia (Oreochromis niloticus) cage aquaculture in a large hydroelectrical reservoir in Southeastern Brazil, Aquacult. Eng. 66 (2015) 30-40.
A. Nutz, M. Schuster, J.-F. Ghienne, et al., Wind-driven bottom currents and related sedimentary bodies in Lake Saint-Jean (Québec, Canada), Bull. 127 (2015) 1194-1208.
R. Ellah, E. Tarek, Bathymetric study of some khors in Lake Nasser, Egypt, Lakes, Reservoirs and Ponds 10 (2016) 139-158.
A.-S. Membrillo-Abad, M.-A. Torres-Vera, J. Alcocer, et al., Trophic State Index estimation from remote sensing of lake Chapala, México, Rev. Mex. Ciencias Geol. 33 (2016) 183-191.
M. Ehigiator, O. Oladosu, I. Ehigiator–Irughe, Determination of volume and direction of flow of Kainji Reservoir using Hydro-Geomatics techniques, Niger. J. Technol. 36 (2017) 1010-1015.
J.E. Votava, T.C. Johnson, R.E. Hecky, Holocene carbonate record of Lake Kivu reflects the history of hydrothermal activity, Proc. Natl. Acad. Sci. USA 114 (2017) 251-256.
J. Xiao, S. Zhang, J. Fan, et al., The 4.2 ka BP event: multi-proxy records from a closed lake in the northern margin of the East Asian summer monsoon, Clim. Past 14 (2018) 1417-1425.
M.D. Al-Murib, S.A. Wells, Hydrodynamic and total dissolved solids model of the tigris river using CE-QUAL-W2, Environ. Process. 6 (2019) 619-641.
A.R. Gyawali, J. Wang, Q. Ma, et al., Paleo-environmental change since the Late Glacial inferred from lacustrine sediment in Selin Co, central Tibet, Palaeogeogr. Palaeoclimatol. Palaeoecol. 516 (2019) 101-112.
S. Maznev, S. Ogorodov, A. Baranskaya, et al., Ice-gouging topography of the exposed Aral Sea bed, Rem. Sens. 11 (2019) 113.
A.M. Munar, J.R. Cavalcanti, J.M. Bravo, et al., Assessing the large-scale variation of heat budget in poorly gauged watershed-shallow lake system using a novel integrated modeling approach, J. Hydrol. 575 (2019) 244-256.
P.O.D. Ardiansyah, R. Yokoyama, DEM generation method from contour lines based on the steepest slope segment chain and a monotone interpolation function, ISPRS J. Photogrammetry Remote Sens. 57 (2002) 86-101.
H. Mizukoshi, M. Aniya, Use of contour-based DEMs for deriving and mapping topographic attributes, Photogramm. Eng. Rem. Sens. 68 (2002) 83-93.
T. Busker, A. de Roo, E. Gelati, et al., A global lake and reservoir volume analysis using a surface water dataset and satellite altimetry, Hydrol. Earth Syst. Sci. 23 (2019) 669-690.
G. Donchyts, F. Baart, H. Winsemius, et al., Earth's surface water change over the past 30 years, Nat. Clim. Change 6 (2016) 810-813.
A.H. Pickens, M.C. Hansen, M. Hancher, et al., Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series, Rem. Sens. Environ. 243 (2020) 111792.
N. Xu, Y. Ma, Z. Wei, et al., Satellite observed recent rising water levels of global lakes and reservoirs, Environ. Res. Lett. 17 (2022) 074013.