AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (8.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Gene expression changes implicate specific peripheral immune responses to Deep and Lobar Intracerebral Hemorrhages in humans

Bodie KneppaBradley P. AnderaGlen C. JicklingbHeather HullaAlan H. YeeaKwan NgaFernando RodriguezaPaulina Carmona-MoraaHajar AminiaXinhua ZhanaMarisa HakoupianaNoor AlomaraFrank R. SharpaBoryana Stamovaa( )
Department of Neurology, School of Medicine, University of California at Davis, Sacramento, CA, USA
Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
Show Author Information

Abstract

The peripheral immune system response to Intracerebral Hemorrhage (ICH) may differ with ICH in different brain locations. Thus, we investigated peripheral blood mRNA expression of Deep ICH, Lobar ICH, and vascular risk factor-matched control subjects (n = 59). Deep ICH subjects usually had hypertension. Some Lobar ICH subjects had cerebral amyloid angiopathy (CAA). Genes and gene networks in Deep ICH and Lobar ICH were compared to controls. We found 774 differentially expressed genes (DEGs) and 2 co-expressed gene modules associated with Deep ICH, and 441 DEGs and 5 modules associated with Lobar ICH. Pathway enrichment showed some common immune/inflammatory responses between locations including Autophagy, T Cell Receptor, Inflammasome, and Neuroinflammation Signaling. Th2, Interferon, GP6, and BEX2 Signaling were unique to Deep ICH. Necroptosis Signaling, Protein Ubiquitination, Amyloid Processing, and various RNA Processing terms were unique to Lobar ICH. Finding amyloid processing pathways in blood of Lobar ICH patients suggests peripheral immune cells may participate in processes leading to perivascular/vascular amyloid in CAA vessels and/or are involved in its removal. This study identifies distinct peripheral blood transcriptome architectures in Deep and Lobar ICH, emphasizes the need for considering location in ICH studies/clinical trials, and presents potential location-specific treatment targets.

References

1

Keep RF, Hua Y, Xi G. Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol. 2012;11(8):720–731. https://doi.org/10.1016/S1474-4422(12)70104-7.

2

Xi G, Strahle J, Hua Y, Keep RF. Progress in translational research on intracerebral hemorrhage: is there an end in sight? Prog Neurobiol. 2014;115:45–63. https://doi.org/10.1016/j.pneurobio.2013.09.007.

3

Caceres JA, Goldstein JN. Intracranial hemorrhage. Emerg Med Clin North Am. 2012;30(3):771–794. https://doi.org/10.1016/j.emc.2012.06.003.

4

Hostettler IC, Seiffge DJ, Werring DJ. Intracerebral hemorrhage: an update on diagnosis and treatment. Expert Rev Neurother. 2019;19(7):679–694. https://doi.org/10.1080/14737175.2019.1623671.

5

van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–176. https://doi.org/10.1016/S1474-4422(09)70340-0.

6

Broderick J, Connolly S, Feldmann E, et al. Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Circulation. 2007;116(16):e391–e413. https://doi.org/10.1161/CIRCULATIONAHA.107.183689.

7

Aguilar MI, Brott TG. Update in intracerebral hemorrhage. Neurohospitalist. 2011;1(3):148–159. https://doi.org/10.1177/1941875211409050.

8

Flaherty ML, Haverbusch M, Sekar P, et al. Long-term mortality after intracerebral hemorrhage. Neurology. 2006;66(8):1182–1186. https://doi.org/10.1212/01.wnl.0000208400.08722.7c.

9

Falcone GJ, Biffi A, Brouwers HB, et al. Predictors of hematoma volume in deep and lobar supratentorial intracerebral hemorrhage. JAMA Neurol. 2013;70(8):988. https://doi.org/10.1001/jamaneurol.2013.98.

10
Patel N, Simon S. Intracerebral Hemorrhage. American Association of Neurological Surgeons. Accessed 11/2/21, https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Intracerebral-Hemorrhage.
11

Ikram MA, Wieberdink RG, Koudstaal PJ. International epidemiology of intracerebral hemorrhage. Curr Atheroscler Rep. 2012;14(4):300–306. https://doi.org/10.1007/s11883-012-0252-1.

12

Massaro AR, Sacco RL, Mohr JP, et al. Clinical discriminators of lobar and deep hemorrhages: the Stroke Data Bank. Neurology. 1991;41(12):1881–5. doi:10.1212/wnl.41.12.1881.

13

Martini SR, Flaherty ML, Brown WM, et al. Risk factors for intracerebral hemorrhage differ according to hemorrhage location. Neurology. 2012;79(23):2275–2282. https://doi.org/10.1212/WNL.0b013e318276896f.

14

Mracsko E, Veltkamp R. Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci. 2014;8:388. https://doi.org/10.3389/fncel.2014.00388.

15

Zhang J, Shi K, Li Z, et al. Organ- and cell-specific immune responses are associated with the outcomes of intracerebral hemorrhage. FASEB J. 2018;32(1):220–229, https://doi.org/10.1096/fsb2.v32.110.1096/fj.201700324r.

16
Neuroimmune communication. Nat Neurosci. 2017;20(2):127. doi:10.1038/nn.4496.
17

Linn J, Halpin A, Demaerel P, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology. 2010;74(17):1346–1350. https://doi.org/10.1212/WNL.0b013e3181dad605.

18
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 29 2008;9:559. doi: 10.1186/1471-2105-9-559.
19

Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw. 2012;46(11).

20

Yang Y, Han L, Yuan Y, Li J, Hei N, Liang H. Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat Commun. 2014;5:3231. https://doi.org/10.1038/ncomms4231.

21

Langfelder P, Mischel PS, Horvath S, Ravasi T. When is hub gene selection better than standard meta-analysis? PLoS ONE. 2013;8(4):e61505. https://doi.org/10.1371/journal.pone.0061505.

22

Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. https://doi.org/10.1101/gr.1239303.

23
yFiles Layout Algorithms for Cytoscape. yWorks. Accessed 11/3/21, https://www.yworks.com/products/yfiles-layout-algorithms-for-cytoscape.
24
Watkins NA, Gusnanto A, de Bono B, et al. A HaemAtlas: characterizing gene expression in differentiated human blood cells. Blood. 7 2009;113(19):e1-9. doi:10.1182/blood-2008-06-162958.
25

Chtanova T, Newton R, Liu SM, et al. Identification of T cell-restricted genes, and signatures for different T cell responses, using a comprehensive collection of microarray datasets. J Immunol. 2005;175(12):7837–7847. https://doi.org/10.4049/jimmunol.175.12.7837.

26

Kramer A, Green J, , Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014;30(4):523–530. https://doi.org/10.1093/bioinformatics/btt703.

27
Ingenuity Downstream Effects Analysis in IPA. Accessed 2/2/22, http://pages.ingenuity.com/rs/ingenuity/images/0812%20downstream_effects_analysis_whitepaper.pdf.
28
Ingenuity Upstream Regulator Analysis in IPA. Accessed 2/2/22, http://pages.ingenuity.com/rs/ingenuity/images/0812%20upstream_regulator_analysis_whitepaper.pdf.
29

Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57. https://doi.org/10.1038/nprot.2008.211.

30

Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009;37(1):1–13. https://doi.org/10.1093/nar/gkn923.

31

Zhao X, Sun G, Zhang H, et al. Polymorphonuclear neutrophil in brain parenchyma after experimental intracerebral hemorrhage. Transl Stroke Res. 2014;5(5):554–561. https://doi.org/10.1007/s12975-014-0341-2.

32

Wang J, Doré S. Inflammation after Intracerebral Hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908. https://doi.org/10.1038/sj.jcbfm.9600403.

33

Moxon-Emre I, Schlichter LC. Neutrophil depletion reduces blood-brain barrier breakdown, axon injury, and inflammation after intracerebral hemorrhage. J Neuropathol Exp Neurol. 2011;70(3):218–235. https://doi.org/10.1097/NEN.0b013e31820d94a5.

34

Zhao X, Ting S-M, Liu C-H, et al. Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage. Nature Commun. 2017;8(1). https://doi.org/10.1038/s41467-017-00770-7.

35

Panaro MA, Mitolo V. Cellular responses to FMLP challenging: a mini-review. Immunopharmacol Immunotoxicol. 1999;21(3):397–419. https://doi.org/10.3109/08923979909007117.

36

Wen Xi, Xu X, Sun W, et al. G-protein-coupled formyl peptide receptors play a dual role in neutrophil chemotaxis and bacterial phagocytosis. Mol Biol Cell. 2019;30(3):346–356. https://doi.org/10.1091/mbc.E18-06-0358.

37

Walsh KB, Woo D, Adeoye O. Response to letter regarding article, “monocyte count and 30-day case fatality in intracerebral hemorrhage”. Stroke. 2015;46(11):e244. https://doi.org/10.1161/STROKEAHA.115.011288.

38

Walsh KB, Sekar P, Langefeld CD, et al. Monocyte count and 30-day case fatality in intracerebral hemorrhage. Stroke. 2015;46(8):2302–2304. https://doi.org/10.1161/STROKEAHA.115.009880.

39

Hammond MD, Taylor RA, Mullen MT, et al. CCR2+ Ly6C(hi) inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J Neurosci. 2014;34(11):3901–3909. https://doi.org/10.1523/JNEUROSCI.4070-13.2014.

40

Zhao M, Tuo H, Wang S, Zhao L. The roles of monocyte and monocyte-derived macrophages in common brain disorders. Biomed Res Int. 2020;2020:1–11. https://doi.org/10.1155/2020/9396021.

41

Zhao X, Grotta J, Gonzales N, Aronowski J. Hematoma resolution as a therapeutic target: the role of microglia/macrophages. Stroke. 2009;40(3 Suppl):S92–S94. https://doi.org/10.1161/STROKEAHA.108.533158.

42

Pan P, Xu L, Zhang H, et al. A review of hematoma components clearance mechanism after subarachnoid hemorrhage. Front Neurosci. 2020;14:685. https://doi.org/10.3389/fnins.2020.00685.

43

Carmona-Mora P, Ander BP, Jickling GC, et al. Distinct peripheral blood monocyte and neutrophil transcriptional programs following intracerebral hemorrhage and different etiologies of ischemic stroke. J Cereb Blood Flow Metab. 2021;41(6):1398–1416. https://doi.org/10.1177/0271678X20953912.

44

Durocher M, Knepp B, Yee A, et al. Molecular correlates of hemorrhage and edema volumes following human intracerebral hemorrhage implicate inflammation, autophagy, mRNA splicing, and T cell receptor signaling. Transl Stroke Res. 2021;12(5):754–777. https://doi.org/10.1007/s12975-020-00869-y.

45

Tschoe C, Bushnell CD, Duncan PW, Alexander-Miller MA, Wolfe SQ. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets. J Stroke. 2020;22(1):29–46. https://doi.org/10.5853/jos.2019.02236.

46

Zhou Y, Wang Y, Wang J, Anne Stetler R, Yang QW. Inflammation in intracerebral hemorrhage: from mechanisms to clinical translation. Prog Neurobiol. 2014;115:25–44. https://doi.org/10.1016/j.pneurobio.2013.11.003.

47

Johnson HL, Chen Yi, Jin F, et al. CD8 T cell-initiated blood-brain barrier disruption is independent of neutrophil support. J Immunol. 2012;189(4):1937–1945. https://doi.org/10.4049/jimmunol.1200658.

48

Mao L, Li P, Zhu W, et al. Regulatory T cells ameliorate tissue plasminogen activator-induced brain haemorrhage after stroke. Brain. 2017;140(7):1914–1931. doi:10.1093/brain/awx111.

49

Li P, Gan Yu, Sun B-L, et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann Neurol. 2013;74(3):458–471. https://doi.org/10.1002/ana.23815.

50

Kuhns MS, Badgandi HB. Piecing together the family portrait of TCR-CD3 complexes. Immunol Rev. 2012;250(1):120–143. https://doi.org/10.1111/imr.12000.

51

Hwang JR, Byeon Y, Kim D, Park SG. Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med. 2020;52(5):750–761. https://doi.org/10.1038/s12276-020-0435-8.

52

Palacios EH, Weiss A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene. 2004;23(48):7990–8000. https://doi.org/10.1038/sj.onc.1208074.

53

Luo JL, Kamata H, Karin M. IKK/NF-kappaB signaling: balancing life and death–a new approach to cancer therapy. J Clin Invest. 2005;115(10):2625–2632. https://doi.org/10.1172/JCI26322.

54

Liu T, Zhang L, Joo D, Sun SC. NF-kappaB signaling in inflammation. Signal Transduct Target Ther. 2017;2. https://doi.org/10.1038/sigtrans.2017.23.

55

Lee JU, Kim LK, Choi JM. Revisiting the concept of targeting NFAT to control T cell immunity and autoimmune diseases. Front Immunol. 2018;9:2747. https://doi.org/10.3389/fimmu.2018.02747.

56

Bradley LM, Dalton DK, Croft M. A direct role for IFN-gamma in regulation of Th1 cell development. J Immunol. 1996;157(4):1350–1358.

57

Smeltz RB, Chen J, Ehrhardt R, Shevach EM. Role of IFN-gamma in Th1 differentiation: IFN-gamma regulates IL-18R alpha expression by preventing the negative effects of IL-4 and by inducing/maintaining IL-12 receptor beta 2 expression. J Immunol. 2002;168(12):6165–6172. https://doi.org/10.4049/jimmunol.168.12.6165.

58

Curtsinger JM, Agarwal P, Lins DC, Mescher MF. Autocrine IFN-gamma promotes naive CD8 T cell differentiation and synergizes with IFN-alpha to stimulate strong function. J Immunol. 2012;189(2):659–668. https://doi.org/10.4049/jimmunol.1102727.

59

Lighvani AA, Frucht DM, Jankovic D, et al. T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci U S A. 2001;98(26):15137–15142. https://doi.org/10.1073/pnas.261570598.

60

Ohshima Y, Yang LP, Uchiyama T, et al. OX40 costimulation enhances interleukin-4 (IL-4) expression at priming and promotes the differentiation of naive human CD4(+) T cells into high IL-4-producing effectors. Blood. 1998;92(9):3338–3345.

61

Choi P, Reiser H. IL-4: role in disease and regulation of production. Clin Exp Immunol. 1998;113(3):317–319. https://doi.org/10.1046/j.1365-2249.1998.00690.x.

62

Schwartz SO, Stansbury F. Significance of nucleated red blood cells in peripheral blood; analysis of 1,496 cases. J Am Med Assoc. 1954;154(16):1339–1340. https://doi.org/10.1001/jama.1954.02940500019007.

63

Moras M, Lefevre SD, Ostuni MA. From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol. 2017;8:1076. https://doi.org/10.3389/fphys.2017.01076.

64

Poh L, Kang SW, Baik SH, et al. Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun. 2019;75:34–47. https://doi.org/10.1016/j.bbi.2018.09.001.

65

Denes A, Coutts G, Lénárt N, et al. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci U S A. 2015;112(13):4050–4055. https://doi.org/10.1073/pnas.1419090112.

66

Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol. 2014;75(2):209–219. https://doi.org/10.1002/ana.24070.

67

Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med. 2019;11(6) 10.15252/emmm.201810248.

68

Zhao H, Zhang X, Dai Z, et al. P2X7 Receptor suppression preserves blood-brain barrier through inhibiting RhoA activation after experimental intracerebral hemorrhage in rats. Sci Rep. 2016;6:23286. doi:10.1038/srep23286.

69
Feng L, Chen Y, Ding R, et al. P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite. J Neuroinflammation. 17 2015;12:190. doi:10.1186/s12974-015-0409-2.
70

Gultekin Y, Eren E, Ozoren N. Overexpressed NLRC3 acts as an anti-inflammatory cytosolic protein. J Innate Immun. 2015;7(1):25–36. https://doi.org/10.1159/000363602.

71

Awad F, Assrawi E, Louvrier C, et al. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther. 2018;187:133–149. https://doi.org/10.1016/j.pharmthera.2018.02.011.

72

Park BS, Lee JO. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp Mol Med. 2013;45:e66. doi:10.1038/emm.2013.97.

73

Zhang XD, Fan QY, Qiu Z, Chen S. MiR-7 alleviates secondary inflammatory response of microglia caused by cerebral hemorrhage through inhibiting TLR4 expression. Eur Rev Med Pharmacol Sci. 2018;22(17):5597–5604. https://doi.org/10.26355/eurrev_201809_15824.

74

Liu Q, Johnson EM, Lam RK, et al. Peripheral TREM1 responses to brain and intestinal immunogens amplify stroke severity. Nat Immunol. 2019;20(8):1023–1034. https://doi.org/10.1038/s41590-019-0421-2.

75
Hakoupian M, Ferino E, Jickling GC, et al. Bacterial lipopolysaccharide is associated with stroke. Sci Rep. Mar 22 2021;11(1):6570. doi:10.1038/s41598-021-86083-8.
76

Zhu H, Wang Z, Yu J, et al. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol. 2019;178:101610. https://doi.org/10.1016/j.pneurobio.2019.03.003.

77

Ducruet AF, Zacharia BE, Hickman ZL, et al. The complement cascade as a therapeutic target in intracerebral hemorrhage. Exp Neurol. 2009;219(2):398–403. https://doi.org/10.1016/j.expneurol.2009.07.018.

78

Rosell A, Vilalta A, Garcia-Berrocoso T, et al. Brain perihematoma genomic profile following spontaneous human intracerebral hemorrhage. PLoS One. 2011;6(2):e16750. doi:10.1371/journal.pone.0016750.

79

Hu X, Tao C, Gan Qi, Zheng J, Li H, You C. Oxidative stress in intracerebral hemorrhage: sources, mechanisms, and therapeutic targets. Oxid Med Cell Longev. 2016;2016:1–12. https://doi.org/10.1155/2016/3215391.

80

Sun J, Chen J, Li T, et al. ROS production and mitochondrial dysfunction driven by PU.1-regulated NOX4-p22(phox) activation in Abeta-induced retinal pigment epithelial cell injury. Theranostics. 2020;10(25):11637–11655. https://doi.org/10.7150/thno.48064.

81

Panday A, Sahoo MK, Osorio D, Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12(1):5–23. https://doi.org/10.1038/cmi.2014.89.

82

Kim DW, Im SH, Kim JY, Kim DE, Oh GT, Jeong SW. Decreased brain edema after collagenase-induced intracerebral hemorrhage in mice lacking the inducible nitric oxide synthase gene. Laboratory investigation. J Neurosurg. 2009;111(5):995–1000. doi:10.3171/2009.3.JNS081285.

83

Wang J, Fields J, Zhao C, et al. Role of Nrf2 in protection against intracerebral hemorrhage injury in mice. Free Radic Biol Med. 2007;43(3):408–414. https://doi.org/10.1016/j.freeradbiomed.2007.04.020.

84

Zhao X, Sun G, Ting S-M, et al. Cleaning up after ICH: the role of Nrf2 in modulating microglia function and hematoma clearance. J Neurochem. 2015;133(1):144–152. https://doi.org/10.1111/jnc.12974.

85

Zhao X, Sun G, Zhang J, et al. Transcription factor Nrf2 protects the brain from damage produced by intracerebral hemorrhage. Stroke. 2007;38(12):3280–3286. https://doi.org/10.1161/STROKEAHA.107.486506.

86

Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221–3247. https://doi.org/10.1007/s00018-016-2223-0.

87

Chen S, Wang X, Nisar MF, Lin M, Zhong JL. Heme oxygenases: cellular multifunctional and protective molecules against UV-induced oxidative stress. Oxid Med Cell Longev. 2019;2019:1–17. https://doi.org/10.1155/2019/5416728.

88

Cherubini A, Polidori MC, Bregnocchi M, et al. Antioxidant profile and early outcome in stroke patients. Stroke. 2000;31(10):2295–2300. https://doi.org/10.1161/01.str.31.10.2295.

89

Polidori MC, Mecocci P, Frei B. Plasma vitamin C levels are decreased and correlated with brain damage in patients with intracranial hemorrhage or head trauma. Stroke. 2001;32(4):898–902. https://doi.org/10.1161/01.str.32.4.898.

90

Penkowa M, Carrasco J, Giralt M, Moos T, Hidalgo J. CNS wound healing is severely depressed in metallothionein I- and II-deficient mice. J Neurosci. 1999;19(7):2535–2545.

91

Lu A, Tang Y, Ran R, Ardizzone TL, Wagner KR, Sharp FR. Brain genomics of intracerebral hemorrhage. J Cereb Blood Flow Metab. 2006;26(2):230–252. https://doi.org/10.1038/sj.jcbfm.9600183.

92

Yamashita S, Okauchi M, Hua Y, Liu W, Keep RF, Xi G. Metallothionein and brain injury after intracerebral hemorrhage. Acta Neurochir Suppl. 2008;105:37–40. doi:10.1007/978-3-211-09469-3_8.

93

Hidalgo J. Metallothioneins and brain injury: What transgenic mice tell us. Environ Health Prev Med. 2004;9(3):87–94. https://doi.org/10.1007/BF02898066.

94

Katsuki H. Exploring neuroprotective drug therapies for intracerebral hemorrhage. J Pharmacol Sci. 2010;114(4):366–378. https://doi.org/10.1254/jphs.10r05cr.

95

Sobrino T, Arias S, Rodríguez-González R, et al. High serum levels of growth factors are associated with good outcome in intracerebral hemorrhage. J Cereb Blood Flow Metab. 2009;29(12):1968–1974. https://doi.org/10.1038/jcbfm.2009.182.

96

Cheng P, Ma L, Shaligram S, et al. Effect of elevation of vascular endothelial growth factor level on exacerbation of hemorrhage in mouse brain arteriovenous malformation. J Neurosurg. 2019;132(5):1566–1573. doi:10.3171/2019.1.JNS183112.

97

Liu W, Wang X, O’Connor M, Wang G, Han F. Brain-derived neurotrophic factor and its potential therapeutic role in stroke comorbidities. Neural Plast. 2020;2020:1969482. https://doi.org/10.1155/2020/1969482.

98

Xu W, Gao L, Li T, Zheng J, Shao A, Zhang J. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) protects against neuronal apoptosis via activation of Akt/MDM2/p53 signaling pathway in a rat model of intracerebral hemorrhage. Front Mol Neurosci. 2018;11:176. https://doi.org/10.3389/fnmol.2018.00176.

99

He Y, Wan S, Hua Y, Keep RF, Xi G. Autophagy after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab. 2008;28(5):897–905. https://doi.org/10.1038/sj.jcbfm.9600578.

100

Yao Z, Bai Q, Wang G, Zhang JH. Mechanisms of oxidative stress and therapeutic targets following intracerebral hemorrhage. Oxid Med Cell Longev. 2021;2021:1–12. https://doi.org/10.1155/2021/8815441.

101

Oh JE, Lee HK. Pattern recognition receptors and autophagy. Front Immunol. 2014;5:300. doi:10.3389/fimmu.2014.00300.

102

Feng Y, Gao J, Cui Y, et al. Neuroprotective effects of resatorvid against traumatic brain injury in rat: involvement of neuronal autophagy and TLR4 signaling pathway. Cell Mol Neurobiol. 2017;37(1):155–168. https://doi.org/10.1007/s10571-016-0356-1.

103

Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27(1):107–132. https://doi.org/10.1146/annurev-cellbio-092910-154005.

104

Mizushima N. The ATG conjugation systems in autophagy. Curr Opin Cell Biol. 2020;63:1–10. https://doi.org/10.1016/j.ceb.2019.12.001.

105

Judith D, Jefferies HBJ, Boeing S, Frith D, Snijders AP, Tooze SA. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIbeta. J Cell Biol. 2019;218(5):1634–1652. https://doi.org/10.1083/jcb.201901115.

106
Q13501 (SQSTM_HUMAN). UniProt. Accessed 2/1/22, https://www.uniprot.org/uniprot/Q13501.
107

Shpilka T, Weidberg H, Pietrokovski S, Elazar Z. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol. 2011;12(7):226. doi:10.1186/gb-2011-12-7-226.

108

Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 2010;29(11):1792–1802. https://doi.org/10.1038/emboj.2010.74.

109

Fang Y, Gao S, Wang X, et al. Programmed cell deaths and potential crosstalk with blood-brain barrier dysfunction after hemorrhagic stroke. Front Cell Neurosci. 2020;14. https://doi.org/10.3389/fncel.2020.00068.

110

Bobinger T, Burkardt P, Huttner HB, Manaenko A. Programmed cell death after intracerebral hemorrhage. Curr Neuropharmacol. 2018;16(9):1267–1281. https://doi.org/10.2174/1570159X15666170602112851.

111

Andreone BJ, Larhammar M, Lewcock JW. Cell death and neurodegeneration. Cold Spring Harb Perspect Biol. 2020;12(2)doi:10.1101/cshperspect.a036434.

112

Bai Q, Liu J, Wang G. Ferroptosis, a regulated neuronal cell death type after intracerebral hemorrhage. Front Cell Neurosci. 2020;14:591874. https://doi.org/10.3389/fncel.2020.591874.

113

Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun. 2017;482(3):419–425. https://doi.org/10.1016/j.bbrc.2016.10.086.

114

Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88. doi:10.1038/s41419-020-2298-2.

115

Li Q, Han X, Lan X, et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight. 2017;2(7):e90777. doi:10.1172/jci.insight.90777.

116

Zhang Z, Wu Y, Yuan S, et al. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res. 2018;1701:112–125. https://doi.org/10.1016/j.brainres.2018.09.012.

117

Xu YR, Lei CQ. TAK1-TABs complex: a central signalosome in inflammatory responses. Front Immunol. 2020;11:608976. https://doi.org/10.3389/fimmu.2020.608976.

118

Tsuchiya Y, Nakabayashi O, Nakano H. FLIP the switch: regulation of apoptosis and necroptosis by cFLIP. Int J Mol Sci. 2015;16(12):30321–30341. https://doi.org/10.3390/ijms161226232.

119

Wang H, Meng H, Li X, et al. PELI1 functions as a dual modulator of necroptosis and apoptosis by regulating ubiquitination of RIPK1 and mRNA levels of c-FLIP. Proc Natl Acad Sci U S A. 2017;114(45):11944–11949. https://doi.org/10.1073/pnas.1715742114.

120

Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12. https://doi.org/10.1002/path.2697.

121

Shahbazi J, Lock R, Liu T. Tumor protein 53-induced nuclear protein 1 enhances p53 function and represses tumorigenesis. Front Genet. 2013;4:80. https://doi.org/10.3389/fgene.2013.00080.

122

Li P, Ma K, Wu HY, Wu YP, Li BX. Isoflavones induce BEX2-dependent autophagy to prevent ATR-induced neurotoxicity in SH-SY5Y Cells. Cell Physiol Biochem. 2017;43(5):1866–1879. https://doi.org/10.1159/000484075.

123

Chinta SJ, Andersen JK. Dopaminergic neurons. Int J Biochem Cell Biol. 2005;37(5):942–946. https://doi.org/10.1016/j.biocel.2004.09.009.

124

Chabrat A, Brisson G, Doucet-Beaupre H, et al. Transcriptional repression of Plxnc1 by Lmx1a and Lmx1b directs topographic dopaminergic circuit formation. Nat Commun. 2017;8(1):933. doi:10.1038/s41467-017-01042-0.

125

Rajagopalan S, Rane A, Chinta SJ, Andersen JK. Regulation of ATP13A2 via PHD2-HIF1alpha signaling is critical for cellular iron homeostasis: implications for Parkinson's disease. J Neurosci. 2016;36(4):1086–1095. https://doi.org/10.1523/JNEUROSCI.3117-15.2016.

126

Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67(1):425–479. https://doi.org/10.1146/annurev.biochem.67.1.425.

127

Hallengren J, Chen PC, Wilson SM. Neuronal ubiquitin homeostasis. Cell Biochem Biophys. 2013;67(1):67–73. https://doi.org/10.1007/s12013-013-9634-4.

128

Myeku N, Figueiredo-Pereira ME. Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: association with sequestosome 1/p62. J Biol Chem. 2011;286(25):22426–22440. https://doi.org/10.1074/jbc.M110.149252.

129

Bednash JS, Mallampalli RK. Regulation of inflammasomes by ubiquitination. Cell Mol Immunol. 2016;13(6):722–728. https://doi.org/10.1038/cmi.2016.15.

130

Liu C, Liu C, Liu H, et al. Increased expression of ubiquitin-specific protease 4 participates in neuronal apoptosis after intracerebral hemorrhage in adult rats. Cell Mol Neurobiol. 2017;37(3):427–435. https://doi.org/10.1007/s10571-016-0375-y.

131

Xu Z, Li X, Chen J, et al. USP11, deubiquitinating enzyme, associated with neuronal apoptosis following intracerebral hemorrhage. J Mol Neurosci. 2016;58(1):16–27. https://doi.org/10.1007/s12031-015-0644-0.

132

Qu X, Wang N, Chen W, Qi M, Xue Y, Cheng W. RNF34 overexpression exacerbates neurological deficits and brain injury in a mouse model of intracerebral hemorrhage by potentiating mitochondrial dysfunction-mediated oxidative stress. Sci Rep. 2019;9(1):16296. doi:10.1038/s41598-019-52494-x.

133
Durocher M, Ander BP, Jickling G, et al. Inflammatory, regulatory, and autophagy co-expression modules and hub genes underlie the peripheral immune response to human intracerebral hemorrhage. J Neuroinflammation. 5 2019;16(1):56. doi:10.1186/s12974-019-1433-4.
134

Hessa T, Sharma A, Mariappan M, Eshleman HD, Gutierrez E, Hegde RS. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature. 2011;475(7356):394–397. https://doi.org/10.1038/nature10181.

135

Kawahara H, Minami R, Yokota N. BAG6/BAT3: emerging roles in quality control for nascent polypeptides. J Biochem. 2013;153(2):147–160. https://doi.org/10.1093/jb/mvs149.

136

Calzado MA, de la Vega L, Moller A, Bowtell DD, Schmitz ML. An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response. Nat Cell Biol. 2009;11(1):85–91. https://doi.org/10.1038/ncb1816.

137
Q6IQ16 (SPOPL_HUMAN). UniProt. Accessed 2/1/22, https://www.uniprot.org/uniprot/Q6IQ16.
138

Errington WJ, Khan MQ, Bueler SA, Rubinstein JL, Chakrabartty A, Prive GG. Adaptor protein self-assembly drives the control of a cullin-RING ubiquitin ligase. Structure. 2012;20(7):1141–1153. https://doi.org/10.1016/j.str.2012.04.009.

139

Caldeira MV, Salazar IL, Curcio M, Canzoniero LM, Duarte CB. Role of the ubiquitin-proteasome system in brain ischemia: friend or foe? Prog Neurobiol. 2014;112:50–69. https://doi.org/10.1016/j.pneurobio.2013.10.003.

140

Hong L, Huang HC, Jiang ZF. Relationship between amyloid-beta and the ubiquitin-proteasome system in Alzheimer's disease. Neurol Res. 2014;36(3):276–282. https://doi.org/10.1179/1743132813Y.0000000288.

141

Bellia F, Lanza V, Garcia-Vinuales S, et al. Ubiquitin binds the amyloid beta peptide and interferes with its clearance pathways. Chem Sci. 2019;10(9):2732–2742. https://doi.org/10.1039/c8sc03394c.

142

Gregori L, Fuchs C, Figueiredo-Pereira ME, Van Nostrand WE, Goldgaber D. Amyloid beta-protein inhibits ubiquitin-dependent protein degradation in vitro. J Biol Chem. 1995;270(34):19702–19708. https://doi.org/10.1074/jbc.270.34.19702.

143

Oddo S. The ubiquitin-proteasome system in Alzheimer's disease. J Cell Mol Med. 2008;12(2):363–373. https://doi.org/10.1111/j.1582-4934.2008.00276.x.

144

Himeno E, Ohyagi Y, Ma L, et al. Apomorphine treatment in Alzheimer mice promoting amyloid-beta degradation. Ann Neurol. 2011;69(2):248–256. https://doi.org/10.1002/ana.22319.

145

Park HM, Kim JA, Kwak MK. Protection against amyloid beta cytotoxicity by sulforaphane: role of the proteasome. Arch Pharm Res. 2009;32(1):109–115. https://doi.org/10.1007/s12272-009-1124-2.

146

Kim J. Pre-clinical neuroprotective evidences and plausible mechanisms of sulforaphane in Alzheimer's Disease. Int J Mol Sci. 2021;22(6) doi:10.3390/ijms22062929.

147

Ribet D, Cossart P. Ubiquitin, SUMO, and NEDD8: key targets of bacterial pathogens. Trends Cell Biol. 2018;28(11):926–940. https://doi.org/10.1016/j.tcb.2018.07.005.

148
UBA3 ubiquitin like modifier activating enzyme 3. NCBI. 2/1/22. https://www.ncbi.nlm.nih.gov/gene/9039.
149

Biffi A, Greenberg SM. Cerebral amyloid angiopathy: a systematic review. J Clin Neurol. 2011;7(1):1–9. https://doi.org/10.3988/jcn.2011.7.1.1.

150

Revesz T, Ghiso J, Lashley T, et al. Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J Neuropathol Exp Neurol. 2003;62(9):885–898. https://doi.org/10.1093/jnen/62.9.885.

151

Sobhanifar S, Schneider B, Löhr F, et al. Structural investigation of the C-terminal catalytic fragment of presenilin 1. Proc Natl Acad Sci U S A. 2010;107(21):9644–9649. https://doi.org/10.1073/pnas.1000778107.

152

Takuma K, Fang F, Zhang W, et al. RAGE-mediated signaling contributes to intraneuronal transport of amyloid-beta and neuronal dysfunction. Proc Natl Acad Sci U S A. 2009;106(47):20021–20026. https://doi.org/10.1073/pnas.0905686106.

153

Deane R, Du Yan S, Submamaryan RK, et al. RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain. Nat Med. 2003;9(7):907–913. https://doi.org/10.1038/nm890.

154

Minami R, Hayakawa A, Kagawa H, Yanagi Y, Yokosawa H, Kawahara H. BAG-6 is essential for selective elimination of defective proteasomal substrates. J Cell Biol. 2010;190(4):637–650. https://doi.org/10.1083/jcb.200908092.

155

Yoon SS, Jo SA. Mechanisms of amyloid-beta peptide clearance: potential therapeutic targets for Alzheimer's disease. Biomol Ther (Seoul). 2012;20(3):245–255. https://doi.org/10.4062/biomolther.2012.20.3.245.

156

Pujadas L, Rossi D, Andres R, et al. Reelin delays amyloid-beta fibril formation and rescues cognitive deficits in a model of Alzheimer's disease. Nat Commun. 2014;5:3443. doi:10.1038/ncomms4443.

157

Scotti MM, Swanson MS. RNA mis-splicing in disease. Nat Rev Genet. 2016;17(1):19–32. https://doi.org/10.1038/nrg.2015.3.

158

Dykstra-Aiello C, Jickling GC, Ander BP, et al. Intracerebral hemorrhage and ischemic stroke of different etiologies have distinct alternatively spliced mRNA profiles in the blood: a pilot RNA-seq study. Transl Stroke Res. 2015;6(4):284–289. https://doi.org/10.1007/s12975-015-0407-9.

159

Stamova B, Ander BP, Jickling G, et al. The intracerebral hemorrhage blood transcriptome in humans differs from the ischemic stroke and vascular risk factor control blood transcriptomes. J Cereb Blood Flow Metab. 2019;39(9):1818–1835. https://doi.org/10.1177/0271678X18769513.

160

Burchell SR, Tang J, Zhang JH. Hematoma expansion following intracerebral hemorrhage: mechanisms targeting the coagulation cascade and platelet activation. Curr Drug Targets. 2017;18(12):1329–1344. https://doi.org/10.2174/1389450118666170329152305.

161

Emiru T, Bershad EM, Zantek ND, et al. Intracerebral hemorrhage: a review of coagulation function. Clin Appl Thromb Hemost. 2013;19(6):652–662. https://doi.org/10.1177/1076029612454938.

162

Quinones-Hinojosa A, Gulati M, Singh V, Lawton MT. Spontaneous intracerebral hemorrhage due to coagulation disorders. Neurosurg Focus. 2003;15(4):E3. doi:10.3171/foc.2003.15.4.3.

163

Saad J, Asuka E, Schoenberger L. Physiology. Platelet activation. StatPearls;2022.

164

Kuter DJ. The biology of thrombopoietin and thrombopoietin receptor agonists. Int J Hematol. 2013;98(1):10–23. https://doi.org/10.1007/s12185-013-1382-0.

165

Jung SM, Moroi M. Platelet glycoprotein Ⅵ. Adv Exp Med Biol. 2008;640:53–63. https://doi.org/10.1007/978-0-387-09789-3_5.

166

Rocanin-Arjo A, Cohen W, Carcaillon L, et al. A meta-analysis of genome-wide association studies identifies ORM1 as a novel gene controlling thrombin generation potential. Blood. 2014;123(5):777–85. doi:10.1182/blood-2013-10-529628.

167

Krynetskiy E, McDonnell P. Building individualized medicine: prevention of adverse reactions to warfarin therapy. J Pharmacol Exp Ther. 2007;322(2):427–434. https://doi.org/10.1124/jpet.106.117952.

168

Lam W, Moosavi L. Physiology, Factor V. StatPearls; 2022.

169

Malkhassian D, Sabir S, Sharma S. Physiology, Factor ⅫⅠ. StatPearls; 2022.

170

Stamova B, Jickling GC, Ander BP, et al. Gene expression in peripheral immune cells following cardioembolic stroke is sexually dimorphic. PLoS ONE. 2014;9(7):e102550. https://doi.org/10.1371/journal.pone.0102550.

171

Tian Y, Stamova B, Jickling GC, et al. Effects of gender on gene expression in the blood of ischemic stroke patients. J Cereb Blood Flow Metab. 2012;32(5):780–791. https://doi.org/10.1038/jcbfm.2011.179.

172

Dykstra-Aiello C, Jickling GC, Ander BP, et al. Altered expression of long noncoding RNAs in blood after ischemic stroke and proximity to putative stroke risk loci. Stroke. 2016;47(12):2896–2903. https://doi.org/10.1161/STROKEAHA.116.013869.

173

Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626–638. https://doi.org/10.1038/nri.2016.90.

174

Qureshi IA, Mehler MF. Emerging role of epigenetics in stroke: part 1: DNA methylation and chromatin modifications. Arch Neurol. 2010;67(11):1316–1322. https://doi.org/10.1001/archneurol.2010.275.

175

Ganti L, Jain A, Yerragondu N, et al. Female gender remains an independent risk factor for poor outcome after acute nontraumatic intracerebral hemorrhage. Neurol Res Int. 2013;2013:1–7. https://doi.org/10.1155/2013/219097.

176

Umeano O, Phillips-Bute B, Hailey CE, et al. Gender and age interact to affect early outcome after intracerebral hemorrhage. PLoS ONE. 2013;8(11):e81664. https://doi.org/10.1371/journal.pone.0081664.

177

James ML, Cox M, Xian Y, et al. Sex and age interactions and differences in outcomes after intracerebral hemorrhage. J Womens Health (Larchmt). 2017;26(4):380–388. https://doi.org/10.1089/jwh.2016.5849.

Brain Hemorrhages
Pages 155-176
Cite this article:
Knepp B, Ander BP, Jickling GC, et al. Gene expression changes implicate specific peripheral immune responses to Deep and Lobar Intracerebral Hemorrhages in humans. Brain Hemorrhages, 2022, 3(4): 155-176. https://doi.org/10.1016/j.hest.2022.04.003

110

Views

0

Downloads

1

Crossref

3

Web of Science

3

Scopus

Altmetrics

Received: 28 March 2022
Revised: 15 April 2022
Accepted: 16 April 2022
Published: 22 April 2022
© 2022 International Hemorrhagic Stroke Association.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Return