AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Home hLife Article
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Article | Open Access

Structural plasticity of human leptin binding to its receptor LepR

Yufeng Xie1,2Xiaoxiong Li3Jianxun Qi1Guijun Shang3,4Defen Lu5( )George Fu Gao1,3( )
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
Shanxi Academy of Advanced Research and Innovation, Shanxi, China
Shanxi Provincial Key Laboratory for Major Infectious Disease Response, Shanxi, China
College of Life Sciences, Shanxi Agricultural University, Shanxi, China
Show Author Information

Highlights

· Cryo-electron microscopy analyses revealed three structures involved in leptin signaling.

· Leptin binds to LepR in a “hand-in-hand” geometry for signaling.

· Conformational rearrangement of leptin upon binding with LepR.

· The asymmetric signaling assemblies are distinct from those of gp130 cytokine receptor homologs.

Graphical Abstract

Abstract

Leptin receptor (LepR) signaling plays an essential role in balancing food intake and energy expenditure. The architecture of LepR signaling assembly is critical for its function. In this study, we determined the structures of three distinct conformations of human leptin–LepR using cryo-electron microscopy at resolutions of 3.88, 3.77, and 3.58 Å. Both 2:2 and 3:3 stoichiometric assemblies were observed, and the complexes exhibited asymmetric open conformations. Leptin undergoes substantial rearrangement of its flexible regions to accommodate binding to LepR. The assembled leptin–LepR complexes connect through a “hand-in-hand” geometry. The open, interlocked 3:3 trimeric assembly results from the engagement of a third leptin–LepR heterodimer with a 2:2 dimer. The asymmetric geometry of LepR is substantially distinct from that of other gp130 cytokine homologs, and that may be due to the twisted and rigid interface between the D3 and D4 domains. These results highlight the distinct engagement of leptin with LepR and provide important insights into the structural plasticity of LepR-signaling assemblies.

References

[1]

de Candia P, Prattichizzo F, Garavelli S, Alviggi C, La Cava A, Matarese G. The pleiotropic roles of leptin in metabolism, immunity, and cancer. J Exp Med 2021(5):218.

[2]

Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 2007;356(3):237-47.

[3]

Friedman JM. Leptin and the endocrine control of energy balance. Nat Metab 2019;1(8):754-64.

[4]

Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997;387(6636):903-8.

[5]

Tartaglia LA, Dembski M, Weng X, Deng NH, Culpepper J, Devos R, et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995;83(7):1263-71.

[6]

Müller TD, Blüher M, Tschöp MH, DiMarchi RD. Anti-obesity drug discovery: advances and challenges. Nat Rev Drug Discov 2022;21(3):201-23.

[7]

Greco M, De Santo M, Comandè A, Belsito EL, Andò S, Liguori A, et al. Leptin-activity modulators and their potential pharmaceutical applications. Biomolecules 2021;11(7).

[8]

Markham A. Setmelanotide: first approval. Drugs 2021;81(3):397-403.

[9]

Zhang YY, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homolog. Nature 1994;372(6505):425-32.

[10]

Zhang FM, Basinski MB, Beals JM, Briggs SL, Churgay LM, Clawson DK, et al. Crystal structure of the obese protein leptin-E100. Nature 1997;387(6629):206-9.

[11]

Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol 2019;15(5):288-98.

[12]

Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Weight-reducing effects of the plasma-protein encoded by the obese gene. Science 1995;269(5223):543-6.

[13]

Fei H, Okano HJ, Li C, Lee GH, Zhao C, Darnell R, et al. Anatomic localization of alternatively spliced leptin receptors (Ob-R) in mouse brain and other tissues. Proc Natl Acad Sci USA 1997;94(13):7001-5.

[14]

Tu H, Hsuchou H, Kastin AJ, Wu XJ, Pan WH. Unique leptin trafficking by a tailless receptor. Faseb J 2010;24(7):2281-91.

[15]

Kloek C, Haq AK, Dunn SL, Lavery HJ, Banks AS, Myers MG. Regulation of Jak kinases by intracellular leptin receptor sequences. J Biol Chem 2002;277(44):41547-55.

[16]

Devos R, Guisez Y, VanderHeyden J, White DW, Kalai M, Fountoulakis M, et al. Ligand-independent dimerization of the extracellular domain of the leptin receptor and determination of the stoichiometry of leptin binding. J Biol Chem 1997;272(29):18304-10.

[17]

Mistrík P, Moreau F, Allen JM. BiaCore analysis of leptin-leptin receptor interaction: evidence for 1:1 stoichiometry. Anal Biochem 2004;327(2):271-7.

[18]

Zhang FM, Chen YY, Heiman M, Dimarchi R. Leptin Structure, function and biology. Vitam Horm 2005;71:345-72.

[19]

Mancour LV, Daghestani HN, Dutta S, Westfield GH, Schilling J, Oleskie AN, et al. Ligand-induced architecture of the leptin receptor signaling complex. Mol Cell 2012;48(4):655-61.

[20]

Peelman F, Van Beneden K, Zabeau L, Iserentant H, Ulrichts P, Defeau D, et al. Mapping of the leptin binding sites and design of a leptin antagonist. J Biol Chem 2004;279(39):41038-46.

[21]

Iserentant H, Peelman F, Defeau D, Vandekerckhove J, Zabeau L, Tavernier J. Mapping of the interface between leptin and the leptin receptor CRH2 domain. J Cell Sci 2005;118(11):2519-27.

[22]

Boulanger MJ, Bankovich AJ, Kortemme T, Baker D, Garcia KC. Convergent mechanisms for recognition of divergent cytokines by the shared signaling receptor gp130. Mol Cell 2003;12(3):577-89.

[23]

Zhou Y, Stevis PE, Cao J, Saotome K, Wu J, Glatman Zaretsky A, et al. Structural insights into the assembly of gp130 family cytokine signaling complexes. Sci Adv 2023;9(11):eade4395.

[24]

Tamada T, Honjo E, Maeda Y, Okamoto T, Ishibashi M, Tokunaga M, et al. Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex. Proc Natl Acad Sci USA 2006;103(9):3135-40.

[25]

Glassman CR, Mathiharan YK, Jude KM, Su L, Panova O, Lupardus PJ, et al. Structural basis for IL-12 and IL-23 receptor sharing reveals a gateway for shaping actions on T versus NK cells. Cell 2021;184(4):983-99.

[26]

Tsirigotaki A, Dansercoer A, Verschueren KHG, Markovic I, Pollmann C, Hafer M, et al. Mechanism of receptor assembly via the pleiotropic adipokine Leptin. Nat Struct Mol Biol 2023;30(4):551-63.

[27]

Saxton RA, Caveney NA, Moya-Garzon MD, Householder KD, Rodriguez GE, Burdsall KA, et al. Structural insights into the mechanism of leptin receptor activation. Nat Commun 2023;14(1):1797.

[28]

Zhao M, Fu L, Chai Y, Sun M, Li Y, Wang S, et al. Atypical TNF-TNFR superfamily binding interface in the GITR-GITRL complex for T cell activation. Cell Rep 2021;36(12):109734.

[29]

Li Y, Tan S, Zhang C, Chai Y, He M, Zhang CW, et al. Limited cross-linking of 4-1BB by 4-1BB ligand and the agonist monoclonal antibody utomilumab. Cell Rep 2018;25(4):909-20.

[30]

Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 2017;14(3):290-6.

[31]

Bepler T, Morin A, Rapp M, Brasch J, Shapiro L, Noble AJ, et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat Methods 2019;16(11):1153-60.

[32]

Sanchez-Garcia R, Gomez-Blanco J, Cuervo A, Carazo JM, Sorzano COS, Vargas J. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Commun Biol 2021;4(1):874.

[33]

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 2004;25(13):1605-12.

[34]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596(7873):583-9.

[35]

Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 2010;66:213-21.

[36]

Emsley P, Cowtan K. Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 2004;60:2126-32.

[37]

Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2010;66:12-21.

[38]

Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, et al. Meeting modern challenges in visualization and analysis. Protein Sci 2018;27(1):14-25.

hLife
Pages 115-123
Cite this article:
Xie Y, Li X, Qi J, et al. Structural plasticity of human leptin binding to its receptor LepR. hLife, 2023, 1(2): 115-123. https://doi.org/10.1016/j.hlife.2023.10.010

178

Views

0

Crossref

Altmetrics

Received: 16 October 2023
Revised: 26 October 2023
Accepted: 28 October 2023
Published: 01 November 2023
© 2023 The Author(s).

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Return