AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research paper

Comparative Cyto-molecular Analysis of Repetitive DNA Provides Insights into the Differential Genome Structure and Evolution of Five Cucumis Species

Shuqiong Yanga,bChunyan ChengaXiaodong QinaXiaqing YuaQunfeng LouaJi LiaChuntao QianaJinfeng Chena( )
State Key Lab of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Key Laboratory of Ecological Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang 473061, China

Peer review under responsibility of Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

The genus Cucumis, includes the cucumber (2n = 14), melon (2n = 24), and other wild species, which is a good model for studying genome organization and evolution due to their variation in genome size and basic chromosome number. In this study, five Cucumis species with different geographical origins and basic chromosome numbers (i.e., C. sativus, C. hystrix, C. melo, C. anguria, and C. metuliferus) were used to identify and characterize the repetitive DNA in detail using a phylogenetic method. Comparative cyto-molecular genetic analysis of repetitive DNA was carried out using a graph-based clustering method, construction of Neighbor-Joining tree and fluorescence in situ hybridization (FISH). The results revealed that the five Cucumis species had differences in the repeat content of their genome, as well as in the composition of repetitive DNA and their genomic proportions. Three species from subgenus Melo showed a decreased tendency in both repeat types and genomic proportions, while two species from subgenus Cucumis also showed a decreased tendency in repeat types, but an increased tendency in genomic proportions. Phylogenic analysis of Cucumis Ty1/Copia, Ty3/Gypsy, and 45S rDNA ITS regions revealed that C. sativus, C. hystrix, and C. melo were closely related species, which C. sativus and C. hystrix were closer, while C. anguria and C. metuliferus were closer to each other and further from the other three species. Differential accumulation and elimination of different repeat types divergently shaped the genomic architecture of these five Cucumis species, contributing to the genome's evolution and diversification. Overall, these results enhance our understanding of the genomes of these five Cucumis species, and contribute to a more holistic view of genome evolution and phylogenetics of this genus.

References

 

Alice, L.A., Campbell, C.S., 1999. Phylogeny of Rubus (Rosaceae) based on nuclear ribosomal DNA internal transcribed spacer region sequences. Am J Bot, 86: 81-97.

 

Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25: 3389-3402.

 

Britten, R.J., Kohne, D.E., 1968. Repeated sequences in DNA. Science, 161: 529-540.

 

Biscotti, M.A., Olmo, E., Heslop-Harrison, J.S., 2015. Repetitive DNA in eukaryotic genomes. Chromosome Res, 23: 415-420.

 

Cai, Z.X., Liu, H.J., He, Q.Y., Pu, M.W., Chen, J., Lai, J.S., Li, X.X., Jin, W.W., 2014. Differential genome evolution and speciation of Coix lacryma-jobi L. and Coix aquatica Roxb. hybrid Guangxi revealed by repetitive sequence analysis and fine karyotyping. BMC Genom, 15: 1025.

 

Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Sayers, E.W., 2016. GenBank. Nucleic Acids Res, 44: 67-72.

 

Dodsworth, S., Chase, M.W., Sarkinen, T., Knapp, S., Leitch, A.R., 2016. Using genomic repeats for phylogenomics: a case study in wild tomatoes (Solanum section Lycopersicon: solanaceae). Biol J Linn Soc, 117: 96-105.

 

Finn, R.D., Clements, J., Arndt, W., Miller, B.L., Wheeler, T.J., Schreiber, F., Bateman, A., Eddy, S.R., 2015. HMMER web server: 2015 update. Nucleic Acids Res, 43: 30-38.

 

Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., González, V.M., Hénaff, E., Câmara, F., Cozzuto, L., Lowy, E., Alioto, T., Capella-Gutiérrez, S., Blanca, J., Cañizares, J., Ziarsolo, P., Gonzalez-Ibeas, D., Rodríguez-Moreno, L., Droege, M., Du, L., Alvarez-Tejado, M., Lorente-Galdos, B., Melé, M., Yang, L., Weng, Y., Navarro, A., Marques-Bonet, T., Aranda, M.A., Nuez, F., Picó, B., Gabaldón, T., Roma, G., Guigó, R., Casacuberta, J.M., Arús, P., Puigdomènech, P., 2012. The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA, 109: 11872-11877.

 

Garrido-Ramos, M.A., 2015. Satellite DNA in plants: more than just rubbish. Cytogenet Genom Res, 146: 153-170.

 

Galdeano, F., Urbani, M.H., Sartor, M.E., Honfi, A.I., Espinoza, F., Quarin, C.L., 2016. Relative DNA content in diploid, polyploid, and multiploid species of paspalum (Poaceae) with relation to reproductive mode and taxonomy. J Plant Res, 129: 697-710.

 

Gonzalez, V.M., Benjak, A., Henaff, E.M., Mir, G., Casacuberta, J.M., Garcia-Mas, J., Puigdomènech, P., 2010. Sequencing of 6.7 mb of the melon genome using a BAC pooling strategy. BMC Plant Biol, 10: 246.

 

He, Q.Y., Cai, Z.X., Hu, T.H., Liu, H.J., Bao, C.L., Mao, W.H., Jin, W.W., 2015. Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.). BMC Plant Biol, 15: 105.

 

Heitkam, T., Petrasch, S., Zakrzewski, F., Kögler, A., Wenke, T., Wanke, S., Schmidt, T., 2015. Next-generation sequencing reveals differentially amplified tandem repeats as a major genome component of Northern Europe's oldest Camellia Japonica. Chromosome Res, 23: 791-806.

 

Huang, S.W., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., Lucas, W.J., Wang, X., Xie, B., Ni, P., Ren, Y., Zhu, H., Li, J., Lin, K., Jin, W., Fei, Z., Li, G., Staub, J., Kilian, A., van der Vossen, E.A., Wu, Y., Guo, J., He, J., Jia, Z., Ren, Y., Tian, G., Lu, Y., Ruan, J., Qian, W., Wang, M., Huang, Q., Li, B., Xuan, Z., Cao, J., Asan, Wu, Z., Zhang, J., Cai, Q., Bai, Y., Zhao, B., Han, Y., Li, Y., Li, X., Wang, S., Shi, Q., Liu, S., Cho, W.K., Kim, J.Y., Xu, Y., Heller-Uszynska, K., Miao, H., Cheng, Z., Zhang, S., Wu, J., Yang, Y., Kang, H., Li, M., Liang, H, Ren, X., Shi, Z., Wen, M., Jian, M., Yang, H., Zhang, G., Yang, Z., Chen, R., Liu, S., Li, J., Ma, L., Liu, H, Zhou, Y., Zhao, J., Fang, X., Li, G., Fang, L., Li, Y., Liu, D., Zheng, H., Zhang, Y., Qin, N., Li, Z., Yang, G., Yang, S., Bolund, L., Kristiansen, K., Zheng, H., Li, S., Zhang, X., Yang, H., Wang, J., Sun, R., Zhang, B., Jiang, S., Wang, J., Du, Y., Li, S., 2009. The genome of the cucumber, Cucumis sativus L. Nat Genet, 41: 1275-1281.

 

Iovene, M., Wielgus, S.M., Simon, P.W., Buell, C.R., Jiang, J., 2008. Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics, 180: 1307-1317.

 

Kakani, R.K., Singh, S.K., Pancholy, A., Meena, R.S., Rakesh, P., Aparna, R., 2011. Assessment of genetic diversity in Trigonellafoenum-Graecum based on nuclear ribosomal DNA, internal transcribed spacer and RAPD analysis. Plant Mol Biol Rep, 29: 315-323.

 

Katsiotis, A., Loukas, M., Heslop-Harrison, J.S., 2000. Repetitive DNA, genome and species relationships in Avena and Arrhenatherum (Poaceae). Ann Bot, 86: 1135-1142.

 

Kejnovsky, E., Hobza, R., Cermak, T., Kubat, Z., Vyskot, B., 2009. The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity (Edinb), 102: 533-541.

 

Kellogg, E.A., Bennetzen, J.L., 2004. The evolution of nuclear genome structure in seed plants. Am J Bot, 91: 1709-1725.

 

Kubis, S., Schmidt, T., Heslop-Harrison, J.S., 1998. Repetitive DNA elements as a major component of plant genomes. Ann Bot, 82: 45-55.

 

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol, 33: 1870-1874.

 

Letunic, I., Bork, P., 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res, 44: 242-245.

 

Li, D., Cuevas, H.E., Yang, L.M., Li, Y., Garcia-Mas, J., Zalapa, J., Staub, J.E., Luan, F., Reddy, U., He, X., Gong, Z., Weng, Y., 2011a. Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genom, 12: 396.

 

Li, Z., Zhang, Z.H., Yan, P.C., Huang, S., Fei, Z., Lin, K., 2011b. RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genom, 12: 540.

 

Lou, Q.F., Iovene, M., Spooner, D.M., Buell, C.R., Jiang, J., 2010. Evolution of chromosome 6 of Solanum species revealed by comparative fluorescence in situ hybridization mapping. Chromosoma, 119: 435-442.

 

Lou, Q.F., He, Y.H., Cheng, C.Y., Zhang, Z., Li, J., Huang, S., Chen, J., 2013. Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber. PLoS One, 8: e62676.

 

Macas, J., Novák, P., Pellicer, J., Čížková, J., Koblížková, A., Neumann, P., Fuková, I., Doležel, J., Kelly, L.J., Leitch, I.J., 2015. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe fabeae. PLoS One, 10: e0143424.

 

Murray, M.G., Thompson, W.F., 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 8: 4321-4325.

 

Novák, P., Neumann, P., Pech, J., Steinhaisl, J., Macas, J., 2013. RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics, 29: 792-793.

 

Osuji, J.O., Crouch, J., Harrison, G., Heslop-Harrison, J.S., 1998. Molecular cytogenetics of Musa species, cultivars and hybrids: location of 18S-5.8S-25S and 5S rDNA and telomere-like sequences. Ann Bot, 82: 243-248.

 

Ouyang, S., Buell, C.R., 2004. The TIGR plant repeat databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Res, 32: 360-363.

 

Paterson, A.H., Bowers, J.E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A., Schmutz, J., Spannagl, M., Tang, H., Wang, X., Wicker, T., Bharti, A.K., Chapman, J., Feltus, F.A., Gowik, U., Grigoriev, I.V., Lyons, E., Maher, C.A., Martis, M., Narechania, A., Otillar, R.P., Penning, B.W., Salamov, A.A., Wang, Y., Zhang, L., Carpita, N.C., Freeling, M., Gingle, A.R., Hash, C.T., Keller, B., Klein, P., Kresovich, S., McCann, M.C., Ming, R., Peterson, D.G., Mehboob-ur-Rahman, Ware, D., Westhoff, P., Mayer, K.F., Messing, J., Rokhsar, D.S., 2009. The Sorghum bicolor genome and the diversification of grasses. Nature, 457: 551-556.

 

Piednoël, M., Carrete-Vega, G., Renner, S.S., 2013. Characterization of the LTR retrotransposon repertoire of a plant clade of six diploid and one tetraploid species. Plant J, 75: 699-709.

 

Platt II, R.N., Vandewege, M.W., Ray, D.A., 2018. Mammalian transposable elements and their impacts on genome evolution. Chromosome Res, 26: 28-43.

 

Richard, G.F., Kerrest, A., Dujon, B., 2008. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev, 72: 686-727.

 

Santos, F.C., Guyot, R., do Valle, C.B., Chiari, L., Techio, V.H., Heslop-Harrison, P., Vanzela, A.L., 2015. Chromosomal distribution and evolution of abundant retrotransposons in plants: gypsy elements in diploid and polyploid Brachiaria forage grasses. Chromosome Res, 23: 571-582.

 

Sebastian, P., Schaefer, H., Telford, I.R., Renner, S.S., 2010. Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci USA, 107: 14269-14273.

 

Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., Liang, C., Zhang, J., Fulton, L., Graves, T.A., Minx, P., Reily, A.D., Courtney, L., Kruchowski, S.S., Tomlinson, C., Strong, C., Delehaunty, K., Fronick, C., Courtney, B., Rock, S.M., Belter, E., Du, F., Kim, K., Abbott, R.M., Cotton, M., Levy, A., Marchetto, P., Ochoa, K., Jackson, S.M., Gillam, B., Chen, W., Yan, L., Higginbotham, J., Cardenas, M., Waligorski, J., Applebaum, E., Phelps, L., Falcone, J., Kanchi, K., Thane, T., Scimone, A., Thane, N., Henke, J., Wang, T., Ruppert, J., Shah, N., Rotter, K., Hodges, J., Ingenthron, E., Cordes, M., Kohlberg, S., Sgro, J., Delgado, B., Mead, K., Chinwalla, A., Leonard, S., Crouse, K., Collura, K., Kudrna, D., Currie, J., He, R., Angelova, A., Rajasekar, S., Mueller, T., Lomeli, R., Scara, G., Ko, A., Delaney, K., Wissotski, M., Lopez, G., Campos, D., Braidotti, M., Ashley, E., Golser, W., Kim, H., Lee, S., Lin, J., Dujmic, Z., Kim, W., Talag, J., Zuccolo, A., Fan, C., Sebastian, A., Kramer, M., Spiegel, L., Nascimento, L., Zutavern, T., Miller, B., Ambroise, C., Muller, S., Spooner, W., Narechania, A., Ren, L., Wei, S., Kumari, S., Faga, B., Levy, M.J., McMahan, L., Van Buren, P., Vaughn, M.W., Ying, K., Yeh, C.T., Emrich, S.J., Jia, Y., Kalyanaraman, A., Hsia, A.P., Barbazuk, W.B., Baucom, R.S., Brutnell, T.P., Carpita, N.C., Chaparro, C., Chia, J.M., Deragon, J.M., Estill, J.C., Fu, Y., Jeddeloh, J.A., Han, Y., Lee, H., Li, P., Lisch, D.R., Liu, S., Liu, Z., Nagel, D.H., McCann, M.C., SanMiguel, P., Myers, A.M., Nettleton, D., Nguyen, J., Penning, B.W., Ponnala, L., Schneider, K.L., Schwartz, D.C., Sharma, A., Soderlund, C., Springer, N.M., Sun, Q., Wang, H., Waterman, M., Westerman, R., Wolfgruber, T.K., Yang, L., Yu, Y., Zhang, L., Zhou, S., Zhu, Q., Bennetzen, J.L., Dawe, R.K., Jiang, J., Jiang, N., Presting, G.G., Wessler, S.R., Aluru, S., Martienssen, R.A., Clifton, S.W., McCombie, W.R., Wing, R.A., Wilson, R.K., 2009. The B73 maize genome: complexity, diversity, and dynamics. Science, 326: 1112-1115.

 

Sharma, S., Raina, S.N., 2005. Organization and evolution of highly repeated satellite DNA sequences in plant chromosomes. Cytogenet Genome Res, 109: 15-26.

 
Smit, A.F.A., Hubley, R., Green, P., 2014. RepeatMasker open-4.0.5 (RMLib: 20140131 & Dfam: 1.3). http://www.repeatmasker.org.
 

The Arabidopsis Genome Initiative, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408: 796-815.

 

Waminal, N.E., Perumal, S., Lee, J., Kim, H.H., Yang, T.J., 2016. Repeat evolution in Brassica rapa (AA), B. oleracea (CC), and B. napus (AACC) genomes. Plant Breed Biotech, 4: 107-122.

 

Wang, W., Haberer, G., Gundlach, H., Gläßer, C., Nussbaumer, T., Luo, M.C., Lomsadze, A., Borodovsky, M., Kerstetter, R.A., Shanklin, J., Byrant, D.W., Mockler, T.C., Appenroth, K.J., Grimwood, J., Jenkins, J., Chow, J., Choi, C., Adam, C., Cao, X.H., Fuchs, J., Schubert, I., Rokhsar, D., Schmutz, J., Michael, T.P., Mayer, K.F., Messing, J., 2014. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat Commun, 5: 3311.

 

Warren, I.A., Naville, M., Chalopin, D., Levin, P., Berger, C.S., Galiana, D., Volff, J.N., 2015. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res, 23: 505-531.

 

Weng, Y.Q., Li, W., Devkota, R.N., Rudd, J.C., 2005. Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor Appl Genet, 110: 462-469.

 

Xiang, Q.P., Xiang, Q.Y., Liston, A., Zhang, X.C., 2004. Phylogenetic relationships in Abies (Pinaceae): evidence from PCR-RFLP of the nuclear ribosomal DNA internal transcribed spacer region. Bot J Linn Soc, 145: 425-435.

 

Yang, L., Koo, D.H., Li, D., Zhang, T., Jiang, J., Luan, F., Renner, S.S., Hénaff, E., Sanseverino, W., Garcia-Mas, J., Casacuberta, J., Senalik, D.A., Simon, P.W., Chen, J., Weng, Y., 2014. Next-generation sequencing, FISH mapping, and synteny-based modeling reveal mechanisms of decreasing dysploidy in Cucumis. Plant J, 77: 16-30.

 

Yang, S.Q., Qin, X.D., Cheng, C.Y., Li, Z.A., Lou, Q.F., Li, J., Chen, J.F., 2017. Organization and evolution of four differentially amplified tandem repeats in the Cucumis hystrix genome. Planta, 246: 749-761.

 

Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L., Geng, J., Han, Y., Li, L., Li, W., Hu, G., Huang, X., Li, W., Li, J., Liu, Z., Li, L., Liu, J., Qi, Q., Liu, J., Li, L., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Zhang, J., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Ren, X., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Cao, T., Wang, J., Zhao, W., Li, P., Chen, W., Wang, X., Zhang, Y., Hu, J., Wang, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, W., Li, G., Liu, S., Tao, M., Wang, J., Zhu, L., Yuan, L., Yang, H., 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science, 296: 79-92.

 

Zhang, Y.X., Fan, C.M., Li, S.S., Chen, Y., Wang, R.R., Zhang, X., Han, F., Hu, Z., 2017. The diversity of sequence and chromosomal distribution of new transposable element-related segments in the Rye genome revealed by FISH and lineage annotation. Front Plant Sci, 8: 1706.

 

Zhang, Z.T., Yang, S.Q., Li, Z.A., Zhang, Y.X., Wang, Y.Z., Cheng, C.Y., Li, J., Chen, J.F., Lou, Q.F., 2016. Comparative chromosomal localization of 45S and 5S rDNAs and implications for genome evolution in Cucumis. Genome, 59: 449-457.

 

Zhou, J., Peng, H., Downie, S.R., Liu, Z.W., Gong, X., 2008. A molecular phylogeny of Chinese apiaceae subfamily apioideae inferred from nuclear ribosomal DNA internal transcribed spacer sequences. Taxon, 57: 402-416.

Horticultural Plant Journal
Pages 192-204
Cite this article:
Yang S, Cheng C, Qin X, et al. Comparative Cyto-molecular Analysis of Repetitive DNA Provides Insights into the Differential Genome Structure and Evolution of Five Cucumis Species. Horticultural Plant Journal, 2019, 5(5): 192-204. https://doi.org/10.1016/j.hpj.2019.07.002

264

Views

4

Downloads

9

Crossref

N/A

Web of Science

10

Scopus

0

CSCD

Altmetrics

Received: 21 March 2019
Revised: 20 May 2019
Accepted: 16 June 2019
Published: 15 July 2019
© 2019 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return