AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (678 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review

Harvest and Postharvest Factors Affecting Bruise Damage of Fresh Fruits

Zaharan HusseinaOlaniyi A. FawolebUmezuruike Linus Oparaa,b,( )
Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Food Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa
Postharvest Technology Research Laboratory, South African Research Chair in Postharvest Technology, Department of Horticultural Science, Faculty of AgriSciences, Stellenbosch University, Stellenbosch 7602, South Africa

Peer review under responsibility of Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS)

Show Author Information

Abstract

Fresh fruits are susceptible to bruising, a common type of mechanical damage during harvest and at all stages of postharvest handling. In quest of developing and adoption of strategies to reduce bruise damage, it is of utmost importance to understand major factors influencing bruise susceptibility of fresh produce at these stages. This review presents a critical discussion of factors affecting bruising during harvest and postharvest handling of fresh fruits. Excessive compression forces during harvesting by handpicking or machines, and a series of impacts during harvesting, transport and packhouse operations can cause severe bruise damage. The review has further revealed that bruising is dependent on a number of other factors such as produce maturity, ripening, harvest time (during the day or season) and time lapse after harvest. The susceptibility to bruising is partly dependent on how these factors alter the produce physiological and biochemical properties, and the environmental conditions such as temperature, humidity and several other postharvest treatments. Hence, the successful applications of harvesting techniques by use of trained personnel and proper harvesting equipment are essential to reduce both the incidence and severity of bruising. Furthermore, the careful selection of postharvest handling temperature and other treatments can increase resistance of fresh produce to bruise damage.

References

 

Abbott, B., Holford, P., Golding, J.B., 2009. Comparison of ‘Cripps Pink’ apple bruising. Acta Hortic, 880: 223-230.

 

Ahmadi, E., 2012. Bruise susceptibilities of kiwifruit as affected by impact and fruit properties. Res Agr Eng, 3: 107-113.

 

Ahmadi, E., Ghasemzadeh, H.R., Sadeghi, M., Moghadam, M., Zarifneshat, S., 2010. The effect of impact and fruit properties on the bruising peach. J Food Eng, 97: 110-117.

 

Akkaravessapong, P., Joyce, D.C., Turner, D.W., 1992. The relative humidity at which bananas are stored or ripened does not influence their susceptibility to mechanical damage. Sci Hortic, 52: 265-268.

 

Aliasgarian, S., Ghassemzadeh, H.R., Moghaddam, M., Ghaffari, H., 2013. Mechanical damage of strawberry during harvest and postharvest operations. WASJ, 22: 969-974.

 
Armstrong, P.R., Brown, G.K., Timm, E.J., 1995. Cushioning choices can avoid produce bruising during handling, in: Kushwaha, L., Serwatowski, R., Brook, R. (Eds.), Harvest and Postharvest Technologies for Fresh Fruits and Vegetables. ASAE, Michigan: 183.
 

Bajema, R.W., Hyde, G.M., Baritelle, A.L., 1998. Turgor and temperature effects on dynamic failure properties of potato tuber tissue. Trans ASAE, 41: 741-746.

 

Banks, N.H., 1990. Factors affecting the severity of deflowering latex stain on banana bunches. Trop Agric, 67: 111-114.

 

Banks, N.H., Borton, C.A., Joseph, M., 1991. Compression bruising test for bananas. J Sci Food Agric, 56: 223-226.

 

Banks, N.H., Joseph, M., 1991. Factors affecting resistance of banana fruit to compression and impact bruising. J Sci Food Agric, 56: 315-323.

 

Baritelle, A.L., Hyde, G.M., 2001. Commodity conditioning to reduce impact bruising. Postharvest Biol Technol, 21: 331-339.

 

Blahovec, J., 1999. Bruise resistance coefficient and bruise sensitivity of apples and cherries. Int Agrophys, 13: 315-321.

 

Bollen, A.F., 2005. Major factors causing variation in bruise susceptibility of apples (Malus domestica) grown in New Zealand. N Z J Crop Hort, 33: 201-210.

 

Bollen, A.F., Cox, N.R., Dela Rue, B.T., Painter, D.J., 2001. A descriptor for damage susceptibility of a population of produce. J Agric Eng Res, 78: 391-395.

 

Boydas, M.G., Ozbek, I.Y., Kara, M., 2014. An efficient laser sensor system for apple impact bruise volume estimation. Postharvest Biol Technol, 89: 49-55.

 

Brosnan, T., Sun, D., 2004. Improving quality inspection of food products by computer vision – a review. J Food Eng, 6: 3-16.

 

Brown, G., Schulte, N., Timm, E., Beaudry, R., Peterson, D., Hancock, J., Takeda, F., 1996. Estimates of mechanization effects on fresh blueberry quality. Appl Eng Agric, 12: 21-26.

 

Buccheri, M., Cantwell, M., 2014. Damage to intact fruit affects quality of slices from ripened tomatoes. LWT – Food Sci Technol, 59: 327-334.

 

Bugaud, C., Ocrisse, G., Salmon, F., Rinaldo, D., 2014. Bruise susceptibility of banana peel in relation to genotype and post-climacteric storage conditions. Postharvest Biol Technol, 87: 113-119.

 

Canete, M.L., Hueso, J.J., Pinillos, V., Cuevas, J., 2015. Ripening degree at harvest affects bruising susceptibility and fruit sensorial traits of loquat (Eriobotrya japonica Lindl.). Sci Hortic, 187: 102-107.

 

H., Chen, Y., Yan, H., Pan, X., Bao, S., Li, Q., Xu, X., Xu, 2018. Loss factor analysis of mechanical damage and cushioning protection measure for citrus reticulate Blanco. Trans TCSAE, 34: 258-266.

 

Chiesa, A., Diaz, L., Cascone, O., Panak, K., Camperi, S., Frezza, D., Fraguas, A., 1998. Texture changes on normal and long shelf-life tomato (Lycopersicon esculentum Mill.) fruit ripening. Acta Hortic, 464: 488.

 

Chonhenchob, V., Singh, S.P., 2003. A comparison of corrugated boxes and reusable plastic containers for mango distribution. Packag Technol Sci, 16: 231-237.

 

J.P., Chun, Huber, D.J., 1998. Polygalacturonase-mediated solubilization and depolymerization of pectic polymers in tomato fruit cell walls: regulation by pH and ionic conditions. Plant Physiol, 117: 1293-1299.

 

Crisosto, C.H., Garner, D., Doyle, J., Day, K.R., 1993. Relationship between fruit respiration, bruising susceptibility, and temperature in sweet cherries. HortScience, 28: 132-135.

 

de Martino, G., Massantini, R., Botondi, R., Mencarelli, F., 2002. Temperature affects impact injury on apricot fruit. Postharvest Biol Technol, 25: 145-149.

 
Dhatt, A.S., Mahajan, B.V.C., 2007. Horticulture Post-Harvest Technology. Punjab Agricultural University, Ludhiana, India.
 

Eckhoff, L., Dierend, W., Köpcke, D., 2009. Influence of foliar fertilization and storage method on bruise sensitivity of apples. Erwerbs-Obstbau, 51: 133-144.

 

Eissa, A.H.A., Albaloushi, N.S., Azam, M.M., 2013. Vibration analysis influence during crisis transport of the quality of fresh fruit on food security. Agric Eng Int CIGR J, 15: 181-190.

 

Ericsson, N.A., Tahir, I.I., 1996. Studies on apple bruising: Ⅱ. The effects of fruit characteristics, harvest date and precooling on bruise susceptibility of three apple cultivars. Acta Agric Scand B Soil Plant Sci, 46: 214-217.

 

Fadiji, T., Coetzee, C., L., Chen, Chukwu, O., Opara, U.L., 2016a. Susceptibility of apples to bruising inside ventilated corrugated paperboard packages during simulated transport damage. Postharvest Biol Technol, 118: 111-119.

 

Fadiji, T., Coetzee, C., Pathare, P., Opara, U.L., 2016b. Susceptibility to impact damage of apples inside ventilated corrugated paperboard packages: effects of package design. Postharvest Biol Technol, 111: 286-296.

 
FAO, 2003. Handling and Preservation of Fruits and Vegetables by Combined Methods for Rural Areas. FAO Agricultural Services Bulletin, Rome: 149.
 

Ferreira, M.D., Sargent, S.A., Brecht, J.K., Chandler, C.K., 2009. Strawberry bruising sensitivity depends on the type of force applied, cooling method, and pulp temperature. HortScience, 44: 1953-1956.

 

Ferreira, M.D., Sargent, S.A., Brecht, J.K., Chandler, C.K., 2008. Strawberry fruit resistance to simulated handling. Sci Agric, 65: 490-495.

 

H., Fu, Shaochun, L.H., Karkee, M.M., D., Chen, Q., Zhang, S., Wang, 2017. ‘Jazz’ apple impact bruise responses to different cushioning materials. Trans ASABE, 60: 327-336.

 

Garcia, J.L., Ruiz-Altisent, M., Barreiro, P., 1995. Factors influencing mechanical properties and bruise susceptibility of apples and pears. J Agric Eng Res, 61: 11-18.

 

Gołacki, K., Bobin, G., Stropek, Z., 2009. Bruise resistance of apples (Melrose variety). TEKA Kom Mot Energ Roln – OL PAN, 9: 40-47.

 

Gunes, G., R.H., Liu, Watkins, C.B., 2002. Controlled-atmosphere effects on postharvest quality and antioxidant activity of cranberry fruits. J Agric Food Chem, 50: 5932-5938.

 

L., He, H., Fu, H., Xia, Manoj, K., Q., Zhang, Whiting, M., 2017. Evaluation of a localized shake-and-catch harvesting system for fresh market apples. Agric Eng Int – CIGR J, 19: 36-44.

 

Hertog, M.L.A.T.M., Ben-Arie, R., Roth, E., Nicolai, B.M., 2004. Humidity and temperature effects on invasive and non-invasive firmness measures. Postharvest Biol Technol, 33: 79-91.

 

Holt, J.E., Schoorl, D., 1976. Bruising and energy dissipation in apples. J Texture Stud, 7: 421-432.

 

B., Hu, W.Q., Yang, Andrews, H., C., Li, Takeda, F., 2017. Towards a semi-mechanical harvesting platform system for harvesting blueberries with fresh-market quality. Acta Hortic, 1180: 335-340.

 

Hussein, Z., Caleb, O.J., Opara, U.L., 2015. Perforation-mediated modified atmosphere packaging of fresh and minimally processed produce – a review. Food Packag Shelf, 6: 7-20.

 

Jarimopas, B., Mahayosanan, T., Srianek, N., 2004. Study of capability of net made of banana string for apple protection against impact. Eng J Kasetsart, 17: 9-16.

 

Jarimopas, B., Robchanachon, J., Surin, R., 2002. Study of wholesale package for fruits and vegetables in Bangkok metropolitan area. TSAE J, 9: 23-28.

 

Jarimopas, B., Singh, S.P., Sayasoonthorn, S., Singh, J., 2007. Comparison of package cushioning materials to protect post-harvest impact damage to apples. Packag Technol Sci, 20: 315-324.

 

Johnston, J.W., Hewett, E.W., Hertog, M.L.T.A.M., 2003. Softening of ‘Cox Orange Pippin’ apples in CA. Acta Hortic, 600: 521-530.

 

S., Jung, Watkins, C.B., 2009. 1-Methylcyclopropene treatment and bruising of different apple cultivars during storage. J Hortic Sci Biotechnol, 84: 143-148.

 

Kader, A.A., 1983. Influence of harvesting methods on quality of deciduous tree fruit. HortScience, 18: 409-411.

 

Kitthawee, U., Pathaveerat, S., Srirungruang, T., Slaughter, D., 2011. Mechanical bruising of young coconut. Biosyst Eng, 109: 211-219.

 

Klein, J.D., 1987. Relationship of harvest date, storage conditions, and fruit characteristics to bruise susceptibility of apple. J Am Soc Hortic Sci, 112: 113-118.

 

Kojima, K., Sakurai, N., Kuraishi, S., 1994. Fruit softening in banana: correlation among stress-relaxation parameters, cell wall components and starch during ripening. Physiol Plant, 90: 772-778.

 

Komarnicki, P., Stopa, R., Szyjewicz, D., Mlotek, M., 2016. Evaluation of bruise resistance of pears to impact load. Postharvest Biol Technol, 114: 36-44.

 

Kramer, G.F., C.Y., Wang, Conway, W.S., 1989. Correlation of reduced softening and increased polyamines levels during low-oxygen storage of ‘McIntosh’ apples. J Am Soc Hortic Sci, 114: 942-946.

 

Kumar, V., Purbey, S.K., Anal, A.K.D., 2016. Losses in litchi at various stages of supply chain and changes in fruit quality parameters. Crop Prot, 79: 97-104.

 
Kupferman, E., 2006. Minimizing bruising in apples. Postharvest Information Network. Washington State University https://postharvest.tfree.wsu.edu/EMK2006B.pdf.
 
Lee, E., 2005. Quality Changes Induced by Mechanical Stress on Roma–Type Tomato and Potential Alleviation by 1-Methylcyclopropene. University of Florida, Gainesville.
 

Lewis, R., Yoxall, A., Marshall, M.B., Canty, L.A., 2008. Characterizing pressure and bruising in apple fruit. Wear, 264: 37-46.

 

Li, J., Karkee, M., Zhang, Q., Xiao, K., Feng, T., 2016a. Characterizing apple picking patterns for robotic harvesting. Comput Electron Agric, 127: 633-640.

 

J., Li, J., Yan, Ritenour, M.A., J., Wang, J., Cao, W., Jiang, 2016b. Effects of 1-methylcyclopropene on the physiological response of Yali pears to bruise damage. Sci Hortic, 200: 137-142.

 

Z., Li, P., Li, J., Liu, 2011. Effect of mechanical damage on mass loss and water content in tomato fruits. Int Agrophys, 25: 77-83.

 

Z., Li, Thomas, C., 2014. Quantitative evaluation of mechanical damage to fresh fruits. Trends Food Sci Technol, 35: 138-150.

 

Lippert, F., Blanke, M.M., 2004. Effect of mechanical harvest and timing of 1-MCP application on respiration and fruit quality of European plums Prunus domestica L. Postharvest Biol Technol, 34: 305-311.

 

F., Lu, Ishikawa, Y., Kitazawa, H., Satake, T., 2010. Impact damage to apple fruits in commercial corrugated fiberboard box packaging evaluated by the pressure-sensitive film technique. J Food Agr Environ, 8: 218-222.

 

Martinez-Romero, D., Castillo, S., Valero, D., 2003. Forced-air cooling applied before fruit handling to prevent mechanical damage of plums (Prunus salicina Lindl.). Postharvest Biol Technol, 28: 135-142.

 

Martínez-Romero, D., Serrano, M., Carbonell, A., Burgos, I., Riquelme, F., Valero, D., 2002. Effects of postharvest putrescine treatment on extending shelf life and reducing mechanical damage in apricot. J Food Sci, 67: 1706-1712.

 

Martinez-Romero, D., Serrano, M., Carbonell, A., Castillo, S., Riquelme, F., Valero, D., 2004. Production Practices and Quality Assessment of Food Crops. Springer, Dordrecht.

 

Martínez-Romero, D., Valero, D., Serrano, M., Burló, F., Carbonell, A., Burgos, I., Riquelme, F., 2000. Exogenous polyamines and gibberellic acid effects on peach (Prunus persica L.) storability improvement. J Food Sci, 65: 288-294.

 

Menniti, A.M., Gregori, R., Donati, I., 2004. 1-Methylcyclopropene retards postharvest softening of plums. Postharvest Biol Technol, 31: 269-275.

 

Mika, A., Buler, Z., Rabcewicz, J., Białkowski, P., Konopacka, D., 2015. Suitability of plum and prune cultivars, grown in a high density planting system, for mechanical harvesting with a canopy contact, straddle harvester. J Hortic Res, 23: 69-81.

 

Mirdehghan, S.H., Rahemic, M., Martínez-Romero, D., Guillén, F., Valverde, J.M., Zapata, P.J., Serrano, M., Valero, D., 2006. Reduction of pomegranate chilling injury during storage after heat treatment: role of polyamines. Postharvest Biol Technol, 44: 19-25.

 

Mitsuhashi-Gonzalez, K., Pitts, M.J., Fellman, J.K., Curry, E.A., Clary, C.D., 2010. Bruising profile of fresh apples associated with tissue type and structure. Appl Eng Agric, 26: 509-517.

 

Montero, C.R.S., Schwarz, L.L., Dos Santos, L.C., Andreazza, C.S., Kechinski, C.P., Bender, R.J., 2009. Postharvest mechanical damage affects fruit quality of ‘Montenegrina’ and ‘Rainha’ tangerines. Pesq Agropec Bras, 44: 1636-1640.

 

Morales-Sillero, A., Rallo, P., Jimenez, M.R., Casanova, L., Suarez, M.P., 2014. Suitability of two table olive cultivars (‘Manzanilla de Sevilla’ and ‘Manzanilla Cacerena’) for mechanical harvesting in super high-density hedgerows. HortScience, 49: 1028-1033.

 

Opara, L.U., 2007. Bruise susceptibilities of ‘Gala’ apples as affected by orchard management practices and harvest date. Postharvest Biol Technol, 43: 47-54.

 

Opara, U.L., Pathare, P.B., 2014. Bruise damage measurement and analysis of fresh horticultural produce – a review. Postharvest Biol Technol, 91: 9-24.

 

Ortiz, C., Blasco, J., Balasch, S., Torregrosa, A., 2011. Shock absorbing surfaces for collecting fruit during the mechanical harvesting of citrus. Biosyst Eng, 110: 2-9.

 
Pang, D.W., 1993. Prediction and Quantification of Apple Bruising. Massey University, Palmerston North.
 

Pholpho, T., Pathaveerat, S., Sirisomboon, P., 2011. Classification of longan fruit bruising using visible spectroscopy. J Food Eng, 104: 169-172.

 

Polat, R., Aktas, T., Ikinci, A., 2012. Selected mechanical properties and bruise susceptibility of nectarine fruit. Int J Food Prop, 15: 1369-1380.

 

Prange, R.K., DeLong, J.M., Harrison, P.A., 2000. Storage humidity and post-storage handling temperature affect bruising and other apple quality characteristics. Acta Hortic, 553: 717-720.

 

Prusky, D., 2011. Reduction of the incidence of postharvest quality losses, and future prospects. Food Secur J, 3: 463-474.

 

Ramos, B., Miller, F.A., Brandão, T.R.S., Teixeira, P., Silva, C.L.M., 2013. Fresh fruits and vegetables – an overview on applied methodologies to improve its quality and safety. Innov Food Sci Emerg, 20: 1-15.

 

Rico, D., Martn-Diana, A.B., Barat, J.M., Barry-Ryan, C., 2007. Extending and measuring the quality of fresh-cut fruit and vegetables: a review. Trends Food Sci Technol, 18: 373-386.

 

Roy, S., Conway, W.S., Watada, A.E., Sams, C.E., Erbe, E.F., Wergin, W.P., 1994. Heat treatment affects epicuticular wax structure and postharvest calcium uptake in ‘Golden Delicious’ apples. HortScience, 29: 1056-1058.

 
Ruiz-Altisent, M., Moreda, G., 2011. Fruits, mechanical properties and bruise susceptibility. In: Encycl Agrophys. Springer, pp. 318–321.
 

Saltveit, M.E., 2002. The rate of ion leakage from chilling-sensitive tissue does not immediately increase upon exposure to chilling temperatures. Postharvest Biol Technol, 26: 295-304.

 

Sarig, Y., 2012. Mechanical harvesting of fruit – past achievements, current status and future prospects. Acta Hortic, 965: 163-169.

 

Schoorl, D., Holt, J.E., 1983. Mechanical damage in agricultural products: a basis for management. Agric Syst, 11: 143-157.

 

Shafie, M.M., Rajabipour, A., Castro-Garcia, S., Jiménez-Jiménez, F., Mobli, H., 2015. Effect of fruit properties on pomegranate bruising. Int J Food Prop, 18: 1837-1846.

 

Shafie, M.M., Rajabipour, A., Mobli, M., 2017. Determination of bruise incidence of pomegranate fruit under drop case. Int J Fruit Sci, 17: 296-309.

 

Shewfelt, R.L., 1986. Postharvest treatment for extending the shelf life of fruits and vegetables. Food Technol J, 40: 70-89.

 

Stow, J.R., Jameson, J., Senner, K., 2004. Storage of cherries: the effects of rate of cooling, store atmosphere and store temperature on storage and shelf life. J Hortic Sci Biotechnol, 79: 941-946.

 

Stropek, Z., Gołacki, K., 2013. The effect of drop height on bruising of selected apple varieties. Postharvest Biol Technol, 85: 167-172.

 

Stropek, Z., Gołacki, K., 2015. A new method for measuring impact related bruises in fruits. Postharvest Biol Technol, 110: 131-139.

 
Studman, C., 1997. Factors affecting bruise susceptibility of fruit, in: Jeronimidis, G., Vincent, J.F.V. (Eds.), Proceedings of the Second International Conference of Plant Biomechanics. University of Reading, Reading, pp. 273–281.
 

Tabatabaekoloor, R., 2013. Engineering properties and bruise susceptibility of peach fruits (Prunus persica). Agric Eng Int CIGR J, 15: 244-252.

 
Tahir, I., 2006. Control of Pre- and Postharvest Factors to Improve Apple Quality and Storability. Swedish University of Agricultural Sciences, Ultuna.
 

Tahir, I.I., Johansson, E., Olsson, M.E., 2009. Improvement of apple quality and storability by a combination of heat treatment and controlled atmosphere storage. HortScience, 44: 1648-1654.

 

Thompson, A.K., 2003. Fruits and Vegetables: Harvesting, Handling and Storage. Blackwell Publishing Ltd., Oxford.

 

Toivonen, P.M.A., Hampson, C., Stan, S., McKenzie, D., Hocking, R., 2007. Factors affecting severity of bruises and degree of apparent bruise recovery in a yellow-skinned apple. Postharvest Biol Technol, 45: 276-280.

 

van der Sluis, A.A., Dekker, M., Jongen, W.M.F., de Jager, A., 2003. Polyphenolic antioxidant in apples: effect of storage conditions on four cultivars. Acta Hortic, 600: 533-539.

 

van Linden, V., de Baerdemaeker, J., 2005. The phenomenon of tomato bruising: where biomechanics and biochemistry meet. Acta Hortic, 682: 925-932.

 

van Linden, V., Scheerlinck, N., Desmet, M., de Baerdemaeker, J., 2006. Factors that affect tomato bruise development as a result of mechanical impact. Postharvest Biol Technol, 42: 260-270.

 

van Zeebroeck, M., Darius, P., de Ketelaere, B., Ramon, H., Tijskens, E., 2007a. The effect of fruit properties on the bruise susceptibility of tomatoes. Postharvest Biol Technol, 45: 168-175.

 

van Zeebroeck, M., Tijskens, E., Dintwa, E., Kafashan, J., Loodts, J., de Baerdemaeker, J., Ramon, H., 2006b. The discrete element method (DEM) to simulate fruit impact damage during transport and handling: case study of vibration damage during apple bulk transport. Postharvest Biol Technol, 41: 92-100.

 

van Zeebroeck, M., van Linden, V., Darius, P., de Ketelaere, B., Ramon, H., Tijskens, E., 2007. The effect of fruit factors on the bruise susceptibility of apples. Postharvest Biol Technol, 46: 10-19.

 

van Zeebroeck, M., van Linden, V., Ramon, H., de Baerdemaeker, J., Nicola, B.M., Tijskens, E., 2007. Impact damage of apples during transport and handling — a review. Postharvest Biol Technol, 45: 157-167.

 

Vursavus, K., Ozguven, F., 2003. Determining the strength properties of the Dixired peach variety. Turk J Agric For, 27: 155-160.

 

J., Wang, B., Teng, Y., Yu, 2006. The firmness detection by excitation dynamic characteristics for peach. Food Control, 17: 353-358.

 

R., Xu, Takeda, F., Krewer, G., C., Li, 2015. Measure of mechanical impacts in commercial blueberry packing lines and potential damage to blueberry fruit. Postharvest Biol Technol, 110: 103-113.

 

P., Yu, C., Li, Takeda, F., Krewer, G., 2014. Visual bruise assessment and analysis of mechanical impact measurement in southern highbush blueberries. Appl Eng Agric, 30: 29-37.

 

Zarifneshat, S., Ghassemzadeh, H.R., Sadeghi, M., Abbaspour-Fard, M.H., Ahmadi, E., Javadi, A., Shervani-Tabar, M.T., 2010. Effect of impact level and fruit properties on Golden Delicious apple bruising. Am J Agric Biol Sci, 5: 114-121.

 

Zipori, I., Dag, A., Tugendhaft, Y., 2014. Mechanical harvesting of table olives: harvest efficiency and fruit quality. HortScience, 49: 55-58.

 

Zoffoli, J.P., Rodriguez, J., 2014. Fruit temperature affects physical injury sensitivity of sweet cherry during postharvest handling. Acta Hortic, 1020: 111-114.

Horticultural Plant Journal
Pages 1-13
Cite this article:
Hussein Z, Fawole OA, Opara UL. Harvest and Postharvest Factors Affecting Bruise Damage of Fresh Fruits. Horticultural Plant Journal, 2020, 6(1): 1-13. https://doi.org/10.1016/j.hpj.2019.07.006

558

Views

39

Downloads

105

Crossref

N/A

Web of Science

110

Scopus

0

CSCD

Altmetrics

Received: 04 April 2019
Revised: 11 June 2019
Accepted: 27 July 2019
Published: 04 September 2019
© 2019 Chinese Society for Horticultural Science (CSHS) and Institute of Vegetables and Flowers (IVF), Chinese Academy of Agricultural Sciences (CAAS).

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return